English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 94967/125512 (76%)
Visitors : 30677073      Online Users : 505
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 期刊論文 >  Item 140.119/130212
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/130212

    Title: The learning problem of multi-layer neural networks
    Authors: 班榮超
    Ban, Jung-Chao
    Chang, Chih-Hung
    Contributors: 應數系
    Keywords: Multi-layer neural networks;Topological entropy;Sofic shift;Learning problem;Linear separation
    Date: 2013-01
    Issue Date: 2020-06-22 13:45:11 (UTC+8)
    Abstract: This manuscript considers the learning problem of multi-layer neural networks (MNNs) with an activation function which comes from cellular neural networks. A systematic investigation of the partition of the parameter space is provided. Furthermore, the recursive formula of the transition matrix of an MNN is obtained. By implementing the well-developed tools in the symbolic dynamical systems, the topological entropy of an MNN can be computed explicitly. A novel phenomenon, the asymmetry of a topological diagram that was seen in Ban, Chang, Lin, and Lin (2009) [J. Differential Equations 246, pp. 552–580, 2009], is revealed.
    Relation: Neural Networks, Vol.46, pp.116-123
    Data Type: article
    DOI 連結: https://doi.org/10.1016/j.neunet.2013.05.006
    DOI: 10.1016/j.neunet.2013.05.006
    Appears in Collections:[應用數學系] 期刊論文

    Files in This Item:

    File SizeFormat
    125.pdf480KbAdobe PDF16View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback