English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 92429/122733 (75%)
Visitors : 26279446      Online Users : 260
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/131066

    Title: 建構圖書館個人化推薦系統-以國立政治大學為例
    Personalized Books Recommendation System: Case Study of National Chengchi University
    Authors: 林芳均
    Lin, Fang-Chun
    Contributors: 陳志銘
    Chen, Chih-Ming
    Keywords: 推薦系統
    Recommender System
    Digital Library
    Content-Based Filtering
    Collaborative Filtering
    Matrix Factorization
    Data Visualization
    Date: 2020
    Issue Date: 2020-08-03 17:49:28 (UTC+8)
    Abstract: 近年來由於資訊的快速增長,圖書館普遍面臨圖書借閱率下降的問題,而讀者如何從不斷擴增書籍的圖書館中找到符合自己喜歡的書籍也是一大考驗。因此,本研究應用政大新啟用之圖書館服務平台Alma所記錄之讀者圖書借閱記錄,並以圖書資訊學資訊組織角度,將個人及整體的圖書借閱紀錄應用於發展以內容為基礎及以協同過濾為基礎的個人化圖書推薦系統,利用主動且個人化的方式為讀者提供圖書推薦服務。本研究的推薦結果分為兩大功能呈現:「當月新書推薦」、「您可能感興趣推薦(舊書推薦)」,並予以「借閱記錄視覺化」輔助讀者了解個人借書行為習慣。

    Due to the rapid growth of information in recent years, libraries commonly face the problem of declining book borrowing rates, as readers find it difficult to find the book they need from an ever-increasing number of books. Hence, this study applied the book loan data from the library service platform Alma, which was newly launched by National Chengchi University Library, to record the borrowing records of readers. Taking the perspectives in Cataloging and Classification of Library and Information Science, this research was conducted by applying library loan records to two kinds of algorithm, based on content-based filtering (CBF) and collaborative filtering (CF). The results were shown via the functions “The Month New Arrival Books” and “You Maybe Like” on the interface. In addition, the system included “Visualized Borrowing Records” to help readers know their borrowing habits.

    The experimental results show that within the system’s functions, content-based filtering (CBF) recommended books were able to meet individual reading preferences, deepen readers’ insights into the topics of interest, while collaborative filtering (CF) recommended books across a wider spectrum, expanding readers’ horizons.
    Moreover, the result of this research confirmed that the library personalized recommender system effectively encouraged readers’ motivation to borrow books from the library, while enhancing readers’ understanding of the new books. This generated a positive impact on both the readers and the library. Furthermore, the visual part of personal borrowing records can help readers understand their reading behavior and preferences effectively.
    In the future, if the personalized book recommendation system can factor the length of time of each loan into consideration, it will further complete the system and meet the readers’ preferences.
    Reference: 中文文獻
    戴玉旻 (2001)。圖書館借閱紀錄探勘系統。國立交通大學資訊科學與工程研究所碩士論文。
    蔡明月 (2018)。從ALMA與WMS系統評析探討雲端圖書館服務平台之發展與趨勢。檢自:https://nclfile.ncl.edu.tw/files/201903/b9192699-836b-4c51-80b5-8f10f709f2f0.pdf
    余明哲 (2013)。圖書館個人化館藏推薦系統。國立交通大學資訊科學與工程研究所碩士論文。
    黃俊龍 (2010)。Bookle : 書籍推薦系統 - 基於讀者的評論與閱讀行為。資訊學院資訊科技(IT)產業研發碩士專班。
    黃河銓( 2009 )。書籍社群推薦系統之建置。he 2009 Conference on Computer Science and Information Engineering Applications 。檢自:http://ir.lib.ypu.edu.tw/bitstream/310904600Q/8782/2/44.pdf
    林正賢(2013)。結合社會性標籤與文獻內容於個人化學術文章推薦。國立中正大學資訊管理學系暨研究所碩士論文,嘉義縣。 取自https://hdl.handle.net/11296/3brp72
    陳灯能、蘇柏銘(2015),結合腦波分析與內容導向過濾為基礎的文章推薦系統,中華民國資訊管理學報,第二十二卷,第二期,頁 141-170。
    Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering, 17(6), 734-749.
    Aditya, P. H., Budi, I., & Munajat, Q. (2016, October). A comparative analysis of memory-based and model-based collaborative filtering on the implementation of recommender system for E-commerce in Indonesia: A case study PT X. In 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS) (pp. 303-308). IEEE.
    Aggarwal, C. C. (2016). An Introduction to Recommender Systems. In Recommender Systems: The Textbook (pp. 1–28). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-29659-3_1
    A. Kent et al (1979), “Use of Library Materials: The University of Pittsburgh Study,” PA.: Pittsburgh University. Retrievedfrom https://crl.acrl.org/index.php/crl/article/view/13418/14864
    Aljukhadar Muhammad (2012), “Information Overload and Usage of Recommendations,”Retrievedfrom https://pdfs.semanticscholar.org/c4c4/c19e4887ecba253f9f21fbe63fdfff145cdd.pdf?_ga=2.112691779.654016936.1576730492-1021708040.1548091742
    Alharthi, H., Inkpen, D., & Szpakowicz, S. (2017). A survey of book recommender systems. Journal of Intelligent Information Systems, 1-22.
    Bhat, W. A. (2018). Long-term preservation of big data: prospects of current storage technologies in digital libraries. Library Hi Tech, 36(3), 539–555. doi: 10.1108/lht-06-2017-0117
    Breeding,M.(2013).BeyondtheILS:ANewGenerationofLibraryServicesPlatforms.InE. Iglesias(Ed.), Robots in Academic Libraries: Advancements in Library Automation. Hershey, Pa.: IGI Global.
    Becker, S. A., Cummins, M., Davis, A., Freeman, A., Giesinger, C. H., Ananthanarayanan, V., ... & Wolfson, N. (2017). NMC horizon report: 2017 library edition. The New Media Consortium
    Burke, Robin. (2002). Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction. 12. 10.1023/A:1021240730564.
    Burke, R. (2007). Hybrid Web Recommender Systems. In P.Brusilovsky, A.Kobsa, &W.Nejdl (Eds.), The Adaptive Web: Methods and Strategies of Web Personalization (pp. 377–408). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-72079-9_12
    Fang, D., Yang, H., Gao, B. and Li, X. (2018), “Discovering research topics from library electronic references using latent Dirichlet allocation”, Library Hi Tech, Vol. 36 No. 3, pp. 400-410.
    Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61–70. doi: 10.1145/138859.138867
    Gasper, Huba. (2015).The cold star problem for recommender systems. Retrived from
    Guan, X., Li, C. T., & Guan., Y. (2017). Matrix Factorization with Rating Completion: an Enhanced SVD Model for Collaborative Filtering Recommender Systems. IEEE Access, 5, 27668 - 27678. [27668]. https://doi.org/10.1109/ACCESS.2017.2772226
    Huang, Z., Chung, W., &Chen, H. (2004). A Graph Model for E-commerce Recommender Systems. Journal of the American Society for Information Science and Technology, 55(3), 259–274. https://doi.org/10.1002/asi.10372
    Josef Fink.(2004) User Modeling Servers: Requirements, Design, and Evaluation (Dissertations in Artificial Intelligence: Infix).
    Konstan, Joseph & Miller, Bradley & Maltz, David & Herlocker, Jon & Gordon, Lee & Riedl, John. (2000). GroupLens: Applying collaborative filtering to Usenet news. Communications of the ACM. 40. 10.1145/245108.245126.
    Koren, Y. (2008, August). Factorization meets the neighborhood: a multifaceted collaborative filtering model. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 426-434).
    Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30-37.
    Lards, Binau (2017). Libraries at the crossroad. OCLC EMEA Regional Council Meeting.Retrived from https://www.oclc.org/content/dam/oclc/events/2017/EMEARC2017/EMEARC-2017-Session-L-Academic-Library-Transformation-Part-2-Lars-Binau.pdf
    Linden, G. D., Jacobi, J. A., & Benson, E. A. (2001). U.S. Patent No. 6,266,649. Washington, DC: U.S. Patent and Trademark Of ce.
    Linden, G., Smith, B., & York, J. (2003). Amazon. com recommendations: Item-to-item collaborative ltering. IEEE Internet computing, 7(1), 76-80.
    M. Fatemi and L. Tokarchuk, "A Community Based Social Recommender System for Individuals & Groups," 2013 International Conference on Social Computing, Alexandria, VA, 2013, pp. 351-356, doi: 10.1109/SocialCom.2013.55.
    Mehta, R., & Rana, K. (2017). A review on matrix factorization techniques in recommender systems. 2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA). doi:10.1109/cscita.2017.8066567 
    Miller, B. N., Konstan, J. A., & Riedl, J. (2004). PocketLens: Toward a personal recommender system. ACM Transactions on Information Systems (TOIS), 22(3), 437-476.
    Rendle, S. (2010, December). Factorization machines. In 2010 IEEE International Conference on Data Mining (pp. 995-1000). IEEE.
    Ricci, F., Rokach, L., &Shapira, B. (2015). Recommender Systems: Introduction and Challenges. In F.Ricci, L.Rokach, &B.Shapira (Eds.), Recommender Systems Handbook (pp. 1–34). Boston, MA: Springer US. https://doi.org/10.1007/978-1- 4899-7637-6_1.
    Nicholson, S.W. and Bennett, T.B. (2016), “Dissemination and discovery of diverse data: do libraries promote their unique research data collections?”, International Information & Library Review, Vol. 48 No. 2, pp. 85-93.
    Simović, A. (2018), “A Big Data smart library recommender system for an educational institution”, Library Hi Tech, Vol. 36 No. 3, pp. 498-523.
    Tejeda-Lorente, Á., Bernabé-Moreno, J., Porcel, C., Galindo-Moreno. (2015). A Dynamic Recommender System as Reinforcement for Personalized Education by a Fuzzly Linguistic Web System. Procedia Computer Science, 55, 1143–1150. doi: 10.1016/j.procs.2015.07.084
    Tsuji, K., Kuroo, E., Sato, S., Ikeuchi, U., Ikeuchi, A., Yoshikane, F., & Itsumura, H. (2012). Use of Library Loan Records for Book Recommendation. 2012 IIAI International Conference on Advanced Applied Informatics. doi: 10.1109/iiai-aai.2012.16
    Wang, J., De Vries, A. P., & Reinders, M. J. (2006, August). Unifying user- based and item-based collaborative filtering approaches by similarity fusion. In Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 501-508). ACM.
    Zhu, Q., Wu, Y., Li, Y., Han, J. and Zhou, X. (2018), “Text mining-based theme logic structure identification: application in library journals”, Library Hi Tech, Vol. 36 No. 3, pp. 411-425.
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105155007
    Data Type: thesis
    DOI: 10.6814/NCCU202001025
    Appears in Collections:[圖書資訊與檔案學研究所] 學位論文

    Files in This Item:

    File Description SizeFormat
    500701.pdf3326KbAdobe PDF0View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback