English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 93218/123590 (75%)
Visitors : 27662641      Online Users : 239
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/131473
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/131473

    Title: 運用階層式分群與RFM分析於電商直播賣家銷售策略之研究
    Research on e-commerce live streaming sellers' sales strategy using hierarchical clustering and RFM Analysis
    Authors: 江冠駒
    Chiang, Kuan-Chu
    Contributors: 周珮婷

    Chou, Pei-Ting
    Lin, Yi-Ling

    Chiang, Kuan-Chu
    Keywords: 階層式分群
    hierarchical clustering
    RFM model
    repurchase rate
    e-commerce live streaming
    Date: 2020
    Issue Date: 2020-09-02 11:42:13 (UTC+8)
    Abstract: 隨著網路時代的發達,線上購物蓬勃發展,根據經濟部統計處統計,電商佔整體零售業比重已經連續8年成長,其中近幾年以直播的方式銷售商品的賣家更是如雨後春筍般地出現,直播拍賣相較傳統的電商多了與顧客互動的即時性,吸引許多網拍業者投入,然而卻不是人人都能經營得成功。過去的相關研究都是針對顧客的特性進行分析,找出最有價值的客群;本研究透過電商直播訂單管理App所收集的賣家交易記錄,針對賣家的銷售行為模式進行分析,使用階層式分群(Hierarchical Clustering)演算法將賣家分成三群,並導入RFM模型,探討不同類型的賣家特徵,對於不同特性的直播主,找出在不同的時間點要賣哪類型的商品才能更有效率地獲利,提供賣家客製化的銷售策略。
    With the development of the internet, online shopping has grown exponentially. According to the Department of Statistics of Ministry of Economic Affairs, the proportion of e-commerce in the overall retail industry has maintained 8 consecutive years of growth. Recently, there are more and more sellers selling their products through live streaming. In contrast to traditional e-commerce, sellers of live streaming auction can interact with customers in real-time. This feature attracts many vendors to try this new way to sell products, but not everyone can achieve success. In the past, relevant researches focus on the characteristics of customers to find out who is the most valuable customer. This research analyzes sales patterns of different sellers by RFM model and hierarchical clustering based on transaction records collected by an e-commerce live streaming order management App. For different kinds of live streaming vendors, find out which types of goods should be sold at different periods to earn most revenue, provide sellers customized sales strategies.
    Reference: 一、中文參考文獻
    Yulin(民106年11月17日)。【圖輯】臉書直播趨勢分析:人氣最高的不是美妝,而是賣運動鞋。The News Lens關鍵評論網。取自https://www.thenewslens.com/article/83459。
    郭瀚揚(2019)。資料探勘應用之研究:零售業的 RFM 分析架構。國立台灣師範大學全球經營與策略研究所碩士論文。
    資策會產業情報研究所(民108年6月3日)。【網購調查系列一】網購消費占比達16.5% 愛用電商平台大排名。取自https://mic.iii.org.tw/news.aspx?id=516&List=5。

    Blashfield, R. K. (1976). Mixture model tests of cluster analysis: Accuracy of four agglomerative hierarchical methods. Psychological Bulletin, 83(3), 377-388.
    Chen, C., Hu, Y., Lu, Y., & Hong, Y. (2019, January). Everyone can be a star: Quantifying grassroots online sellers’ live streaming effects on product sales. Paper present at the Proceedings of the 52nd Hawaii International Conference on System Sciences (pp. 2548-2557).
    Day, W. H., & Edelsbrunner, H. (1984). Efficient algorithms for agglomerative hierarchical clustering methods. Journal of classification, 1(1), 7-24.
    Gajewski, A. S. (2013). A qualitative study of how Facebook storefront retailers convert fans to buyers (Doctoral dissertation, Walden University).
    Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241-254.
    Kuiper, F. K. (1971). A Monte Carlo comparison of six clustering procedures (Doctoral dissertation, University of Washington).
    Leeraphong, A., & Sukrat, S. (2018, August). How Facebook Live Urge SNS Users to Buy Impulsively on C2C Social Commerce?. Paper presented at the Proceedings of the 2nd International Conference on E-Society, E-Education and E-Technology (pp. 68-72).
    Murtagh, F. (1983). A survey of recent advances in hierarchical clustering algorithms. The computer journal, 26(4), 354-359.
    Sneath, P. H., & Sokal, R. R. (1963). Principles of Numerical Taxonomy. San Franrcisco: W. H. Freeman.
    Sohrabi, B., & Khanlari, A. (2007). Customer lifetime value (CLV) measurement based on RFM model. Iranian Accounting & Auditing Review, 14(47), 7-20.
    Sotiropoulos, D. N., Tzihrintzis, G. A., Savvopoulos, A., & Virvou, M. (2006, June). A comparison of customer data clustering techniques in an e-shopping Application. Paper presented at the Proceedings of 2nd International Workshop on Web Personalization, Recommender Systems and Intelligent User Interfaces.
    Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 58(301), 236-244.
    Wei, J. T., Lin, S. Y., & Wu, H. H. (2010). A review of the application of RFM model. African Journal of Business Management, 4(19), 4199-4206.
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107354006
    Data Type: thesis
    DOI: 10.6814/NCCU202001179
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    400601.pdf2104KbAdobe PDF0View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback