English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 109952/140887 (78%)
Visitors : 46338584      Online Users : 546
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/131901


    Title: 經由觸覺振動辨識音樂之可行性研究
    Tactile Vibration: An Alternative Channel of Musical Recognition
    Authors: 劉紋銨
    Liu, Wen-An
    Contributors: 蔡子傑
    陳宜秀

    Tsai, Tzu-Chieh
    Chen, Yi-Hsiu

    劉紋銨
    Liu, Wen-An
    Keywords: 音樂
    振動
    音樂辨識
    旋律辨識
    感官替代
    Music
    Vibration
    Musical Recognition
    Rhythm Recognition
    Sensory Substitution
    Date: 2020
    Issue Date: 2020-09-02 13:08:11 (UTC+8)
    Abstract: 隨著近年科技的蓬勃發展,學界及商業界陸續推出將節奏、音量等音樂元素或音樂情緒轉換為振動,使人們能夠透過上衣、背心、座椅及手套等管道感知音樂內涵的觸覺裝置,期望藉此探討以觸覺傳遞音樂蘊含之豐富資訊的可能性。此一嘗試也使得將聽覺轉由觸覺呈現的感官替代工具不再只是專為身障者所設計,而有機會發展成不分族群皆能一同共享的通用設計。可在此同時,由於學界及業界皆未針對不同類型音樂資訊在聽覺與觸覺間的轉換進行系統化研究,使得轉換方式的發展雖廣泛而多樣,卻鮮少有研究以綜觀的角度探討各類型音樂資訊以哪種方式轉換最能透過振動有效傳遞。知識的缺乏也造成各類型裝置在開發過程中難以從宏觀的角度選擇最有效的音樂資訊轉換方式,音樂資訊的傳遞成效進因此受限,也限制了相關科技的發展。因此本項研究期望從表述音樂主題的旋律著手,藉由探討聽覺正常者以觸覺辨識音樂中旋律的可能性,協助深化對聽覺與觸覺間資訊轉換的認知,並為學界及商業界奠定探索相關領域時所需的基礎。
    本項研究以對振動敏感的手部為對象,轉速15,000 RPM(± 2,500RPM)的圓柱型振動馬達為傳遞媒介,透過將旋律轉化為振動,並將旋律的速度、節奏、旋律輪廓及音長變化等4個面向反應在振動的速度及振動強度,探討經由觸覺辨識旋律的可能性。實驗結果證實人可以透過觸覺辨識音樂,且將拍子、音長及旋律輪廓三者轉換成振動後,呈現拍子的振動模式具有高辨識正確率,可知拍子轉換為振動後形成的心理呈現與聽覺的不變長期表徵最相似,因此能推論拍子最有利於在觸覺傳遞資訊。而由於呈現音長的振動模式與其他模式在正確率及辨識行為上無顯著差異,可知音長轉換為振動後形成的心理呈現與聽覺的不變長期表徵的相似度不高,因此能推論音長在觸覺傳遞資訊上無顯著效用。與其兩者相對,因含有旋律輪廓的模式具有低辨識正確率,可知旋律輪廓轉換為振動後形成的心理呈現與聽覺的不變長期表徵極端不相似,因此能推論旋律輪廓不利於在觸覺傳遞資訊。實驗也同時證明並非透過觸覺感知到的音樂元素越多,對辨識越有力。藉由本次實驗,作者期望建立對於觸覺作為資訊傳遞管道以及音樂資訊傳遞的認知,以為相關領域奠定基礎認識,及提供可能的未來研究方向。
    Reference: 蔡振家. (2013). 音樂認知心理學: 國立臺灣大學出版中心.
    Bach-Y-Rita, P., Collins, C. C., Saunders, F. A., White, B., & Scadden, L. (1969). Vision Substitution by Tactile Image Projection. Nature, 221(5184), 963-964. doi:10.1038/221963a0
    Bach-y-Rita, P., & Kercel, S. W. (2003). Sensory substitution and the human–machine interface. Trends in cognitive sciences, 7(12), 541-546.
    Dowling, W. J., & Fujitani, D. S. (1971). Contour, interval, and pitch recognition in memory for melodies. The Journal of the Acoustical Society of America, 49(2B), 524-531.
    Dowling, W. J., Lung, K. M.-T., & Herrbold, S. (1987). Aiming attention in pitch and time in the perception of interleaved melodies. Perception & Psychophysics, 41(6), 642-656.
    Gardner, E. P., & Martin, J. H. (2000). Coding of sensory information. Principles of neural science, 4, 411-429.
    Geldard, F. A. (1957). Adventures in tactile literacy. American Psychologist, 12(3), 115.
    Gibson, J. J. (1962). Observations on active touch. Psychological Review, 69(6), 477-491. doi:10.1037/h0046962
    Handel, S. (1993). Listening: An introduction to the perception of auditory events: The MIT Press.
    Hébert, S., & Peretz, I. (1997). Recognition of music in long-term memory: Are melodic and temporal patterns equal partners? Memory & cognition, 25(4), 518-533.
    Hertenstein, M. J., Holmes, R., McCullough, M., & Keltner, D. (2009). The communication of emotion via touch. Emotion, 9(4), 566-573. doi:10.1037/a0016108
    Hevner, K. (1936). Experimental studies of the elements of expression in music. American journal of Psychology, 48(2), 246-268.
    Jones, L. A., & Lederman, S. J. (2006). Human hand function: Oxford University Press.
    Karam, M., Branje, C., Nespoli, G., Thompson, N., Russo, F. A., & Fels, D. I. (2010). The emoti-chair: an interactive tactile music exhibit. Paper presented at the CHI `10 Extended Abstracts on Human Factors in Computing Systems, Atlanta, Georgia, USA.
    Karam, M., Russo, F. A., & Fels, D. I. (2009). Designing the model human cochlea: An ambient crossmodal audio-tactile display. IEEE Transactions on Haptics, 2(3), 160-169.
    Mazzoni, A., & Bryan-Kinns, N. (2016). Mood Glove: A haptic wearable prototype system to enhance mood music in film. Entertainment Computing, 17, 9-17. doi:https://doi.org/10.1016/j.entcom.2016.06.002
    Merchel, S., Altinsoy, M. E., & Stamm, M. (2011). Tactile Identification of non-percussive music instruments. Paper presented at the Proceedings of Forum Acusticum.
    Merchel, S., Altinsoy, M. E., & Stamm, M. (2012). Touch the sound: audio-driven tactile feedback for audio mixing applications. Journal of the Audio Engineering Society, 60(1/2), 47-53.
    Miell, D., MacDonald, R. A., Hargreaves, D. J., Pavlicevic, M., Wilson, G., Powles, J., . . . Glennie, E. (2005). Musical communication: Oxford University Press on Demand.
    Narmour, E. (1990). The analysis and cognition of basic melodic structures: The implication-realization model: University of Chicago Press.
    Papetti, S., & Saitis, C. (2018). Musical Haptics. Cham: Springer.
    Petry, B., Illandara, T., Elvitigala, D. S., & Nanayakkara, S. (2018). Supporting rhythm activities of deaf children using music-sensory-substitution systems. Paper presented at the Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
    Petry, B., Illandara, T., & Nanayakkara, S. (2016). MuSS-bits: sensor-display blocks for deaf people to explore musical sounds. Paper presented at the Proceedings of the 28th Australian Conference on Computer-Human Interaction.
    Révész, G. (1950). Psychology and art of the blind.
    Roederer, J. G. (2012). Introduction to the Physics and Psychophysics of Music: Springer Science & Business Media.
    Schulkind, M. D. (1999). Long-term memory for temporal structure. Memory & cognition, 27(5), 896-906.
    Schulkind, M. D., Posner, R. J., & Rubin, D. C. (2003). Musical Features That Facilitate Melody Identification: How Do You Know It`s ““Your”” Song When They Finally Play It? Music perception: an interdisciplinary journal, 21(2), 217-249.
    Sinclair, D. C. (1981). Mechanisms of cutaneous sensation: Oxford University Press, USA.
    Tovey, D. F. (2013). The forms of music: Read Books Ltd.
    Verrillo, R. T. (1963). Effect of contactor area on the vibrotactile threshold. The Journal of the Acoustical Society of America, 35(12), 1962-1966.
    Verrillo, R. T., & Gescheider, G. A. (1992). Perception via the sense of touch. Tactile aids for the hearing impaired, 1-36.
    White, B. W. (1960). Recognition of distorted melodies. The American journal of psychology, 73(1), 100-107.
    Description: 碩士
    國立政治大學
    數位內容碩士學位學程
    107462008
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107462008
    Data Type: thesis
    DOI: 10.6814/NCCU202001518
    Appears in Collections:[數位內容碩士學位學程] 學位論文
    [數位內容與科技學士學位學程] 學位論文

    Files in This Item:

    File Description SizeFormat
    200801.pdf10228KbAdobe PDF2123View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback