English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 94967/125512 (76%)
Visitors : 30677397      Online Users : 495
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 期刊論文 >  Item 140.119/133715
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/133715

    Title: Entropy Dimension of Shift Spaces on Monoids
    Authors: 班榮超
    Ban, Jung-Chao
    Chang, Chih-Hung
    Huang, Nai-Zhu
    Contributors: 應數系
    Date: 2020-06
    Issue Date: 2021-01-25 14:24:49 (UTC+8)
    Abstract: We consider the entropy dimension of G-shifts of finite type for the case where G is a non-Abelian monoid. Entropy dimension tells us whether a shift space has zero topological entropy. Suppose the Cayley graph CG of G has a finite representation (that is, {CgG : g ∈ G} is a finite set up to graph isomorphism), and relations among generators of G are determined by a matrix A. We reveal an association between the characteristic polynomial of A and the finite representation of the Cayley graph. After introducing an algorithm for the computation of the entropy dimension, the set of entropy dimensions is related to a collection of matrices in which the sum of each row of every matrix is bounded by the number of leaves of the graph. Furthermore, the algorithm extends to G having finitely many free-followers.
    Relation: Journal of Mathematical Physics, 61, 072702
    Data Type: article
    DOI 連結: https://doi.org/10.1063/1.5124073
    DOI: 10.1063/1.5124073
    Appears in Collections:[應用數學系] 期刊論文

    Files in This Item:

    File SizeFormat
    123.pdf524KbAdobe PDF16View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback