English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 94967/125512 (76%)
Visitors : 30677359      Online Users : 505
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 期刊論文 >  Item 140.119/133716
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/133716

    Title: Entropy Dimension of Shifts of Finite Type on Free Groups
    Authors: 班榮超
    Ban, Jung-Chao
    Chang, Chih-Hung
    Contributors: 應數系
    Keywords: topological degree;entropy dimension;free group;finitely generated group;Cayley graph;conjugacy-invariant
    Date: 2020-06
    Issue Date: 2021-01-25 14:25:09 (UTC+8)
    Abstract: This paper considers the topological degree of G-shifts of finite type for the case where G is a finitely generated free group. Topological degree is the logarithm of entropy dimension; that is, topological degree is a characterization for zero entropy systems. Following the conjugacy-invariance of topological degree, we show that it is equivalent to solving a system of nonlinear recurrence equations. More explicitly, the topological degree of G-shift of finite type is achieved as the maximal spectral radius of a collection of matrices corresponding to the shift itself.
    Relation: AIMS Mathematics, 2020, Volume 5, Issue 5, 5121-5139
    Data Type: article
    DOI 連結: https://doi.org/10.3934/math.2020329
    DOI: 10.3934/math.2020329
    Appears in Collections:[應用數學系] 期刊論文

    Files in This Item:

    File SizeFormat
    124.pdf273KbAdobe PDF10View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback