English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 109952/140887 (78%)
Visitors : 46347137      Online Users : 1232
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/138388


    Title: 都市「街區開放空間」「以自然為本(Nature-based Solutions , NBS)」規劃設計之氣候變遷綜效、權衡、共效益-社區道路
    Synergies, Trade-offs, and Co-benefits Between Nature-based Solutions Planning and Climate Change in Urban “Street Open Space”: Community Roads
    Authors: 林家靖
    Lin, Chia-Ching
    Contributors: 蔡育新
    Tsai, Yu-Hsin
    林家靖
    Lin, Chia-Ching
    Keywords: 都市計畫
    「街區開放空間」
    氣候變遷
    減緩與調適
    綜效
    「以自然為本(Nature-based Solutions , NBS)」
    Urban planning
    ";Street Open Space"
    Climate change
    Mitigation and adaptation
    Synergy
    ";Nature-based Solutions"
    Date: 2021
    Issue Date: 2022-01-03 16:14:35 (UTC+8)
    Abstract: 近年全球氣候變遷之影響愈加顯著,將「以自然為本的解決方案(Nature-based Solutions , NBS) 」納入都市規劃決策中,日漸成為學者、政策擬定者的著重方法。本國現階段進入危險老舊建物重建的必要時點,提供建成環境「街區開放空間(Street open space)」重塑的可能,善用「以自然為本」的規劃設計可產生多項因應氣候變遷減緩、調適、與其他永續效益,以作為都市空間因應氣候變遷威脅之重要工具。
    本研究以台北市社區道路街區開放空間為實證範圍,透過敘述性統計、成對樣本t檢定、集群分析與質性分析,探討街區開放空間因應氣候變遷之空間規劃設計與產出效益,納入綜效(Synergies)、權衡(Trade-offs)與共效益(Co-benefits)的分析觀點釐清永續導向重建策略間的交互關聯性。
    研究成果顯示,社區道路街區開放空間規模、「以自然為本」環境產出規模、與因應氣候變遷及其他永續效益皆於重建後有所成長,惟街區開放空間之規劃設計仍以灰基底概念為主,導致該空間無法完全發揮潛在效益,甚或衍生負面效益,顯示現行規範無法有效引導建物永續導向重建。本研究政策建議為:善用建物退縮政策增加社區道路街區開放空間規模、有效執行綠基底設計理念,並將必要灰色空間透水鋪面化,建立街區「以自然為本」的空間環境,落實永續導向重建。
    In recent years, the impact of global climate change has become more and more significant. Integrating Nature-based Solutions (NBS) into urban planning decisions has become an increasingly important approach for scholars and policy makers. The demand for buildings reconstruction in Taiwan has provided an opportunnity for rebuilding “street open space” with Nature-based Solutions to address climate change challenges in the built environment.
    This study focused on street open space, aims to investigate Nature-based Solutions-related spatial planning and design tools, and benefits during buildings reconstruction phase, and to analyze their synergies, trade-offs and co-benefits.The research cases adopted for this empirical study are the community streets in Taipei. The research methods include descriptive statistics, Spearman`s correlation, paired sample t-test, cluster analysis and qualitative analysis.
    The research results show that the size of street open space, nature-based solutions environment, climate change mitigation and adaption benefits, and non-climate change related co-benefits were all improved after the street open space was rebuilt at community streets. However, the planning and design of the street open space is still based on the concept of gray infrastructure based. This leads to the street open space cannot fully comply the potential benefits, or even derived negative benefits. It shows that the existing laws and regulations cannot effectively guide the sustainable oriented reconstruction of buildings. The policy recommendations of this study are as follows: (1) Increase the street open space size of community roads via the policy of building setback efficiently. (2) Implement the design concept of green infrastructure based, and make the gray space permeable pavement at the street open space. (3) Establish a Nature-based built environment to achieve sustainable-oriented reconstruction.
    Reference: 中文參考文獻
    內政部營建署,2009,市區道路及附屬工程設計標準。
    內政部營建署,2017,市區道路植栽參考手冊。
    內政部營建署,2018,都市人本交通道路規劃設計手冊(第二版)。
    內政部營建署,2019,建築技術規則建築設計施工編。
    交通部中央氣象局,2018,氣候百問,「交通部中央氣象局」,https://www.cwb.gov.tw/V8/C/C/Knowledge/index.html,2020年5月21日。
    吳宇恆、廖學志、葉容君,2019,「新北市目前人行道鋪面之節能減碳策略及其施工案例與成效」。「鋪面工程」,17(1):53-71。
    徐嘉信,2020,「綠色基礎設施於都市「街區開放空間」對氣候變遷減緩與調適之綜效、權衡與共效益」,國立政治大學地政研究所碩士論文:台北。
    國家發展委員會,2014a,國家氣候變遷調適行動計畫(102-106年)。
    國家發展委員會,2014b,土地使用領域行動方案(102-106年)。
    梁紹芳,2019,捷運對都會區內人口產業分布之影響–台北捷運實證研究,國立政治大學地政研究所碩士論文:台北。
    陳建蓉、章錦瑜,2013,「人行道外側植栽型式對景觀偏好之影響」。「建築學報」,86:127 – 143。
    楊純明,2013,「氣候智能(慧)型農業、農作生產、環境調適、氣候變遷、糧食安全」。「作物、環境與生物資訊」,10(3):217~228。
    臺北市政府,2010,臺北市建築管理自治條例。
    臺北市政府,2011,臺北市土地使用分區管制規則。
    臺北市政府,2015,市區道路及附屬工程設計規範。
    臺北市政府,2016,臺北市新建建築物綠化實施規則。
    蔡育新、林家靖、鍾佳諭,2021a,「社區巷弄「街區開放空間」之氣候變遷規劃與效益」(尚未發表之論文)。
    蔡育新、徐嘉信、王絢、林家靖,2021b,「因應氣候變遷之都市街區規劃設計策略與永續「共效益」—建物重建階段」。「都市與計劃」,48(1):27-48。
    蔡育新、徐嘉信、林家靖,2021c,「街區開放空間」之氣候變遷規劃綜效與共效益–建物重建對主次要道路之驅動。「都市與計劃」,已接受。

    英文參考文獻
    Adhikari, K. and Hartemink, A.E. (2015). Linking Soils of Ecosystem Services- A Global Review. Geoderma. 262:101-111.
    Ahern, J. (2011). From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world. Landscape and Urban Planning, 100(4): 341–343.
    An, N., Fan, M., Zhang, F., Christie, P., Yang, J., Huang, J., … Dobermann, A. (2015). Exploiting co-benefits of increased rice production and reduced greenhouse gas emission through optimized crop and soil management. PLoS ONE, 10, 1–17.
    Anderson, C. M., Field, C. B., & Mach, K. J. (2017). Forest offsets partner climate-change mitigation with conservation. Frontiers in Ecology and the Environment, 15(7), 359–365.
    Anenberg, S. C., Schwartz, J., Shindell, D., Amann, M., Faluvegi, G., Klimont, Z., … Vignati, E. (2012). Global air quality and health cobenefits of mitigating near-term climate change through methane and black carbon emission controls. Environmental Health Perspectives, 120(6), 831–839
    Apsimon, H., Amann, M., Åström, S., & Oxley, T. (2009). Synergies in addressing air quality and climate change. Climate Policy, 9(6), 669–680.
    Armson, D., Stringer, P., Ennos, A.R., 2013. The effect of street trees and amenity grass on urban surface water runoff in Manchester, UK. Urban For. Urban Green. 12, 282–286.
    Asadian Y, & Weiler M (2009) A new approach in measuring rainfall interception by urban trees in coastal British Columbia. Water Quality Research Journal of Canada, 44, 16–25.
    Barua, A., and Whinston, A. B. (1998). Decision Support for Managing Organizational Design Dynamics. Decision Support Systems (22:1), January 1998, pp. 45-58.
    Bennett, E.M., Cramer, W., Begossi, A., Cundill, G., Díaz, S., Egoh, B.N., Geijzendorffer, I.R., Krug, C.B., Lavorel, S., Lazos, E., Lebel, L., Martín-López, B., Meyfroidt, P., Mooney, H.A., Nel, J.L., Pascual, U., Payet, K., Harguindeguy, N.P., Peterson, G.D., Prieur-Richard, A.H., Reyers, B., Roebeling, P., Seppelt, R., Solan, M., Tschakert, P., Tscharntke, T., Turner, B.L., Verburg, P.H., Viglizzo, E.F., White, P.C.L., Woodward, G., 2015. Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability. Curr. Opin. Environ. Sustain. 14, 76–85.
    Bergesen, J. D., Heath, G. A., Gibon, T., & Suh, S. (2014). Thin-film photovoltaic power generation offers decreasing greenhouse gas emissions and increasing environmental co-benefits in the long term. Environmental Science and Technology, 48(16), 9834–9843.
    Berland A., Shiflett S.A., Shuster W.D., Garmestani A.S., Goddard H.C., Herrmann D.L., Hopton M.E (2017). The role of trees in urban stormwater management. Landsc. Urban Plan. 2017;162:167–177.
    Betsill, M. and Bulkeley, H. (2007). Looking back and thinking ahead: a decade of cities and climate change research. Local Environment: The International Journal of Justice and Sustainability, 12(5): 447–456.
    Brown, M. B., and Forsythe, A. B. (1974). Robust tests for the equality of variances. Journal of the American Statistical Association, 69 : 364-367.
    Brown, R. D., Vanos, J., Kenny, N., and Lenzholzer, S. (2015). Designing urban parks that ameliorate the effects of climate change. Landscape and Urban Planning, 138: 118-131
    Bryan BA, King D, Wang E (2010). Biofuels agriculture: landscapescale tradeoffs between fuel, economics, carbon, energy, food, and fiber. Glob Change Biol-Bioenergy, 2:330–345.
    Buyung, N.R.; Ghani, A.N.A. Permeable pavements and its contribution to cooling effect of surrounding temperature. In Proceedings of the International Conference of Global Network for Innovative Technology and Awam International Conference in Civil Engineering, Bukit Jambul, Malaysia, 8–9 August 2017; p. 170003
    Buyung, N.R.; Ghani, A.N.A. Permeable pavements and its contribution to cooling effect of surrounding temperature. In Proceedings of the International Conference of Global Network for Innovative Technology and Awam International Conference in Civil Engineering, Bukit Jambul, Malaysia, 8–9 August 2017; p. 170003
    C. Raudsepp-Hearne, G. D. Peterson, and E. M. Bennett. (2010). Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proceedings of the National Academy of Sciences.
    C.Y.Jim. (2004). Green-space preservation and allocation for sustainable greening of compact cities. Cities, 頁 311-320.
    C.Y.Jim. (2012). Sustainable urban greening strategies for compact cities in developing and developed economies. Urban Ecosystems, 頁 741-761.
    Calfapietra, C., Niinemets, Ü., Peñuelas, J., 2015. Urban Plant Physiology: adaptationmitigation strategies under permanent stress. Trends Plant Sci. 20, 72–75.
    Carrus, G., Scopelliti, M., Lafortezza, R., Colangelo, G., Ferrini, F., Salbitano, F., Agrimi, M., Portoghesi, L., Semenzato, P., Sanesi, G., 2015. Go greener, feel better? The positive effects of biodiversity on the well-being of individuals visiting urban and peri-urban green areas. Landsc. Urban Plan. 134, 221–228.
    Casilda Saavedra, William W.Budd. (2009). Climate change and environmental planning: Working to build community resilience and adaptive capacity in Washington State, USA. Habitat International, 頁 246-252.
    Casilda Saavedra, William W.Budd. (2009). Climate change and environmental planning: Working to build community resilience and adaptive capacity in Washington State, USA. Habitat International, 頁 246-252.
    Chan, K.M.A., Hoshizaki, L., Klinkenberg, B., 2011. Ecosystem services in conservation planning: targeted benefits vs. co-benefits or costs? PLoS One 6 (9),P24378.
    Chapman, R., Keall, M., Howden-Chapman, P., Grams, M., Witten, K., Randal, E., & Woodward, A. (2018). A cost benefit analysis of an active travel intervention with health and carbon emission reduction benefits. International Journal of Environmental Research and Public Health, 15(5), 962.
    Charoenkit, S.; Piyathamrongchai, K (2019). A review of urban green spaces multifunctionality assessment: A way forward for a standardized assessment and comparability. Ecol. Indic. 2019, 107, 105592.
    Clausen JC. 2007. Jordan Cove watershed project 2007 finalreport.
    Connop, S., Vandergert, P., Eisenberg, B., Collier, M.J., Nash, C., Clough, J., Newport, D., 2016. Renaturing cities using a regionally-focused biodiversity-led multifunctional benefits approach to urban green infrastructure. Environ. Sci. Policy 62, 1–13.
    Cook-Patton, S. and Bauerle, T. (2012). Potential benefits of plant diversity on vegetated roofs: a literature review. Journal of Environmental Management: 106: 85-92.
    Corning P.A. (1998). The Synergism hypothesis: on the concept of synergy and its role in the evolution of complex systems. J Soc Evol Syst 21(2):133–172
    Cynthia Skelhorn, Sarah Lindley, Geoff Levermore. (2014). The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landscape and Urban Planning.
    D. Armson, P. Stringer, A.R. Ennos. (2012). The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban Forestry & Urban Greening.
    Dagmar Hasse, Nina Schwarz, Michael Strohbach, Franziska Kroll and Ralf Seppelt. (2012). Synergies, Trade-offs, and Losses of Ecosystem Services in Urban Regions an Integrated Multiscale Framework Applied to the Leipzig-Halle Region, Germany. Ecology and Society.
    Daniele La Rosa, Riccardo Privitera, Luca Barbarossa, Paolo La Greca. (2016). Assessing spatial benefits of urban regeneration programs in a highly vulnerable urban context: A case study in Catania, Italy. Landscape and Urban Planning, 180-192.
    Dang HH, Michaelowa A, Tuan DD (2003). Synergy of adaptation and mitigation strategies in the context of sustainable development: the case of Vietnam. Clim Policy 3(1):81–96.
    David J. Nowak, Daniel E. Crane. (2002). Carbon storage and sequestration by urban trees in the USA. Environmental Pollution.
    Demuzere, M., Orru, K., Heidrich, O., Olazabal, E., Geneletti, D., Orru, H., Bhave, A. G., Mittal, N., Feliu, E. and Faehnle, M. (2014). Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. Journal of Environmental Management, 145: 107-115.
    Derkzen, M. L., van Teeffelen, A. J. A., and Verburg, P. H. (2015). Quantifying urban ecosystem services based on highresolution data of urban green space: an assessment for Rotterdam, the Netherlands. Journal of applied Ecology, 52: 1020-1032.
    Dietz, M.E., Clausen, J.C., 2006. Saturation to improve pollutant retention in a rain garden. Environ. Sci. Technol. 40, 1335–1340.
    Dowling, P., & Russ, P. (2012). The benefit from reduced energy import bills and the importance of energy prices in GHG reduction scenarios. Energy Economics, 34, S429–S435.
    Duan, H., & Wang, S. (2018). Potential impacts of China’s climate policies on energy security. Environmental Impact Assessment Review, 71, 94–101.
    Duguma, L.A., Wambugu, S.W., Minang, P.A., van Noordwijk, M. (2014). A systematicanalysis of enabling conditions for synergy between climate change mitigation andadaptation measures in developing countries. Environ. Sci. Policy 42, 138–148
    Duguma, L.A., Wambugu, S.W., Minang, P.A., van Noordwijk, M. (2014). Climate change mitigation and adaptation in the land use sector: from complementarity to synergy. Environmental management 54 (3), 420-432
    Ellis, J. (2012). Sustainable surface water management and green infrastructure in UK urban catchment planning. Journal of Environmental Planning and Management, 56 (1), 24-41.
    Ewing, R. and Cervero, R. (2010). Travel and the built environment: A Meta-Analysis. Journal of the American Planning Association, 76(3): 265-294.
    Fahmy, M.; Sharples, S. On the development of an urban passive thermal comfort system in Cairo, Egypt. Build. Environ. 2009, 44, 1907–1916
    Fahmy, M.; Sharples, S.; Yahiya, M. LAI based trees selection for mid latitude urban developments: A microclimatic study in Cairo, Egypt. Building and Environment 2010, 45, 345–357.
    Farchi, S., De Sario, M., Lapucci, E., Davoli, M., & Michelozzi, P. (2017). Meat consumption reduction in Italian regions: Health co-benefits and decreases in GHG emissions. PLoS ONE, 12(8), e0182960.
    Farjoun, M. (1998).The Independent and Joint Effects of the Skill and Physical Bases of Relatedness in Diversification. Strategic Management Journal (19:7), 1998, pp. 611-630
    Fletcher TD, Shuster W, Hunt WF, Ashley R, Butler D, Arthur S, …Viklander M (2015). SUDS, LID, BMPs, WSUD and more – The evolution and application of terminology surrounding urban drainage. Urban Water Journal, 12, 525–542.
    Fullerton, D., & Karney, D. H. (2018). Multiple pollutants, co-benefits, and suboptimal environmental policies. Journal of Environmental Economics and Management, 87, 52–71.
    future of Land Use, Advances in Agroforestry. Springer,pp.105-126.
    Gibon, T., Arvesen, A., & Hertwich, E. G. (2017). Life cycle assessment demonstrates environmental co-benefits and trade-offs of lowcarbon electricity supply options. Renewable and Sustainable Energy Reviews, 76, 1283–1290.
    Gill, S., Handley, J., Ennos, A. and Pauleit, S. (2007). Adapting cities for climate change: the role of the green infrastructure. Built Environment, 33 (1): 115-133.
    Harvey CA, Chaco´n M, Donatti CI et al (2013). Climate-smart landscapes: opportunities and challenges for integrating adaptation and mitigation in tropical agriculture.
    Hubacek, K. and Kronenberg, J. (2013). Synthesizing different perspectives on the value of urban ecosystem services. Landscape and Urban Planning, 109: 1–6.
    Hydrol. Process. 2008, 22, 1640–1649.
    Inkiläinen ENM, McHale MR, Blank GB, James AL, Nikinmaa E (2013) The role of the residential urban forest in regulating throughfall: a case study in Raleigh, North Carolina, USA. Landsc Urban Plan 119:91–103
    IPCC AR4, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp.
    IPCC AR5, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp
    Jari Niemela¨ • Sanna-Riikka Saarela • Tarja So¨derman • Leena Kopperoinen • Vesa Yli-Pelkonen • Seija Va¨re • D. Johan Kotze. (2010). Although not yet widely used in planning practices, the ecosystem services approach can provide an opportunity for land-use planning to develop ecologically sustainable urban regions. Currently, information on ecosystem services of urban regions is lackin. Biodiversity Conservation, p3225-3243.
    Salmond, J.A., Tadaki, M., Vardoulakis, S. et al (2016). Health and climate related ecosystem services provided by street trees in the urban environment. Environ Health 15, S36 .
    Jim, C. Y. (2004). Green-space preservation and allocation for sustainable greening of compact cities. Cities, 21(4): 311-320.
    Johannsen, V. K., Nord-Larsen, T., Riis-Nielsen, T., Bastrup-Birk, A., Vesterdal, L., and Møller, I. S. (2009). Acquiring and updating Danish forest data for use in UNFCCC negotiations. In Forest & Landscape Working Papers. Hørsholm: Forest & Landscape Denmark.
    Karlsson, M., Alfredsson, E. and Westling, N. (2020). Climate policy co-benefits: a review. Climate Policy, 20(3)
    Kidanu S, Mamo T, Stroosnijder L (2004). Eucalyptus-wheat interaction on ethiopian nitosols. Agric Syst 80:151–170.
    Kwan, S. C., & Hashim, J. H. (2016). A review on co-benefits of mass public transportation in climate change mitigation. Sustainable Cities and Society, 22, 11–18.
    Lange, M., Eisenhauer, N., Sierra, C. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun 6, 6707 (2015).
    Larsen Larissa. (2015). Urban climate and adaptation strategies. Innovations in the Face of Climate Change.
    Laukkonen, J., Paola Kim-Blanco, P. and Lenhart, J. (2016). Combining Climate Change Adaptation and Mitigation Measures. Habitat International, 33(3):287–292.
    Lazic M, Heinzl A (2011). IT governance and business performance: a resource based analysis. A manuscript. University of Mannheim, Mannheim, p 12
    Li, H.; Harvey, J.; Jones, D. Cooling effect of permeable asphalt pavement under dry and wet conditions. Transp. Res. Rec. 2013, 2372, 97–107
    Liang, C., Schimel, J. P., & Jastrow, J. D. (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105.
    Liu Y, Li T, Peng H. A new structure of permeable pavement for mitigating urban heat island. Sci Total Environ. 2018 Sep 1;634:1119-1125.
    Liu, M., Huang, Y., Hiscock, R., Li, Q., Bi, J., Kinney, P. L., & Sabel, C. E. (2016). Do climate change policies promote or conflict with subjective wellbeing: A case study of Suzhou, China. International Journal of Environmental Research and Public Health, 13(3), 344.
    Lovell, S.T., Taylor, J.R (2013). Supplying urban ecosystem services through multifunctional green infrastructure in the United States. Landscape Ecol 28, 1447–1463 .
    Luber, G., and McGeehin, M. (2008). Climate Change and Extreme Heat Events. American Journal of Preventive Medicine, 35(5): 429-435.
    Luo, Z., Wang, E., Xing, H., Smith, C., Wang, G., & Cresswell, H. (2017). Opportunities for enhancing yield and soil carbon sequestration while reducing N2O emissions in rainfed cropping systems. Agricultural and Forest Meteorology, 232, 400–410.
    M. Parry, N. Arnell, T. McMichael, R. Nicholls, P. Martens, S. Kovats, M. Livermore, C. Rosenzweig, A. Iglesias, G. Fischer (2001). Millions at risk: defining critical climate change threats and targets. Global Environ. Change, 11, pp. 181-183
    M. White , G. Kimm , N. Langenheim (2017). Pedestrian access modelling with tree shade – won’t someone think of the children…. Procedia Engineering 198 ( 2017 ) 139 – 151
    MA. (2005). Millennium ecosystem assessment, synthesis. Washington, DC: World Resources Institute.
    MacNaughton, P., Cao, X., Buonocore, J., Cedeno-Laurent, J., Spengler, J., Bernstein, A., & Allen, J. (2018). Energy savings, emission reductions, and health co-benefits of the green building movement. Journal of Exposure Science and Environmental Epidemiology, 28(4), 307–318.
    Marchioni, M.; Becciu, G. Experimental results on permeable pavements in urban areas: A synthetic review. Int. J. Sustain. Dev. Plan. 2015, 10, 806–817
    Markandya, A., Sampedro, J., Smith, S. J., Van Dingenen, R., Pizarro-Irizar, C., Arto, I., & González-Eguino, M. (2018). Health co-benefits from air pollution and mitigation costs of the Paris agreement: A modelling study. The Lancet Planetary Health, 2(3), p126–p133.
    J. Matocha, G. Schroth, . Hills, and D. Hole(2012). Integrating climate change adaptation and mitigation through agroforestry and ecosystem conservation Agroforestry: The future of global land use, Advances in Agroforestry 9:105-126
    McHale, M. R., I. C. Burke, M. A. Lefsky, P. J. Peper, and E. G. McPherson. 2009. Urban forest biomass estimates: is it important to use allometric relationships developed specifi-cally for urban trees? Urban Ecosystems 12:95–113.
    McPherson, E. G., and J. R. Simpson. 2001. C dioxide reduc-tions through urban forestry: guidelines for professional and volunteer tree planters. PSW GTR-171. USDA Forest Service, Pacific Southwest Research Station, Center for Urban Forest Research, Albany, California, USA
    Meerow, S., and Newell. J. P. (2017). Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landscape and Urban Planning, 159: 62-75.
    Millennium Ecosystem Assessment (MEA)(2005). Ecosystems and Human Well-Being: Synthesis. Washington, D.C.: Island Press.
    Milligan, G. W., & Sokol, L. M. (1980). A two-stage clustering algorithm with robust recovery characteristics. Educational and Psychological Measurement, 40(3), 755–759.
    Monberg, R.J., Howe, A.G., Ravn, H.P. et al (2018). Exploring structural habitat heterogeneity in sustainable urban drainage systems (SUDS) for urban biodiversity support. Urban Ecosyst 21, 1159–1170.
    Morash J., Wright A., LeBleu C., Meder A., Kessler R., Brantley E., Howe J.(2019). "Increasing Sustainability of Residential Areas Using Rain Gardens to Improve Pollutant Capture, Biodiversity and Ecosystem Resilience," Sustainability, MDPI, Open Access Journal, vol. 11(12), pages 1-18, June.
    Muthanna, T.M.; Viklander, M.; Thorolfsson, S.T. Seasonal climatic effects on the hydrology of a rain garden.
    Nasir R.A., Ahmad S.S.,2, Ahmed A.Z. , Ibrahim N. (2018). Asian Journal of Behavioural Studies (AjBeS), 3(11) , p.179-189
    Natividade-Jesus, E.; Almeida, A.; Sousa, N.; Coutinho-Rodrigues, J (2019). A Case Study Driven Integrated Methodology to Support Sustainable Urban Regeneration Planning and Management. Sustainability , 11: 4129.
    Nesshöver, C., Assmuth, T., Irvine, K.N., Rusch, G.M., Waylen, K.A., Delbaere, B., Haase, D., Jones-Walters, L., Keune, H., Kovacs, E., Krauze, K., Külvik, M., Rey, F., van Dijk, J., Vistad, O.I., Wilkinson, M.E., Wittmer, H., 2016. The science, policy and practice of nature-based solutions: an interdisciplinary perspective. Sci. Total Environ.
    Nowak, D., Greenfield, E., Hoehn, R. and Lapoint, E. (2013). Carbon storage and sequestration by trees in urban and community areas of the United States. Environmental Pollution, 178: 229-236.
    O’Sullivan, F. (2015). The Urban Planner’s Guide to a Post COP21 World. Next City.
    Osman Balaban and Jose Antonio Puppim de Oliveira. (2014). Understanding the links between urban regeneration and climatefriendly urban development: lessons from two case studies in Japan. Local Environment.
    Pataki, D.E., M.M. Carreiro, J. Cherrier, N.E. Grulke, V. Jennings, S. Pincetl, R.V. Pouyat, T.H. Whitlow, and W.C. Zipperer. (2011), “Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions”, Frontiers in Ecol. Environ., 9, 27-36.
    Pathak, M., & Shukla, P. R. (2016). Co-benefits of low carbon passenger transport actions in Indian cities: Case study of Ahmedabad. Transportation Research Part D: Transport and Environment, 44, 303–316.
    Patz, J. A., Gibbs, H. K., Foley, J. A., Rogers, J. V., & Smith, K. R. (2007). Climate change and global health: Quantifying a growing ethical crisis. EcoHealth, 4(4), 397–405
    Peng, W., Yang, J., Wagner, F., & Mauzerall, D. L. (2017). Substantial air quality and climate co-benefits achievable now with sectoral mitigation strategies in China. Science of the Total Environment, 598, 1076–1084
    Penman, Jim et al. (eds.). 2003. Definitions and methodological options to inventory emissions from direct human-induced degradation of forests and devegetation of other vegetation types. 32 p. Intergovernmental Panel on Climate Change.
    Pietrapertosa, F., Salvia, M., Hurtado, S. D. G., D`Alonzo, V., Church, J. M., Musco, F. Geneletti, D., and Reckien, D. (2018). Urban climate change mitigation and adaptation planning: Are Italian cities ready? Cities, https://doi.org/10.1016/j.cities.2018.11.009
    Pouyat, R. V., Yesilonis, I. D. and Nowak, D.J. (2006). Carbon Storage by Urban Soils in the United States. Journal of Environmental Quality, 35: 1566.
    Quam, V. G. M., Rocklöv, J., Quam, M. B. M., & Lucas, R. A. I. (2017). Assessing greenhouse gas emissions and health co-benefits: A structured review of lifestyle-related climate change mitigation strategies. International Journal of Environmental Research and Public Health, 14(5).
    R.J.T. Klein, S. Huq, F. Denton, T.E. Downing, R.G. Richels, J.B. Robinson, F.L. Toth M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden, C.E. Hanson (Eds.) (2007). Inter-relationships Between Mitigation and Adaptation. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, pp. 745-777
    R.S.J. Tol (2005). Mitigation and adaptation: trade-offs in substance and methods. Environ. Sci. Policy, 8 (6) , pp. 572-578
    Rafaj, P., Schöpp, W., Russ, P., Heyes, C., & Amann, M. (2013). Co-benefits of post-2012 global climate mitigation policies. Mitigation and Adaptation Strategies for Global Change, 18, 801–824.
    Raymond, C.M., Frantzeskaki, N., Kabisch, N., Berry, P., Breil, M., Nita, M.R., Geneletti, D., Calfapietra, C., 2017. A framework for assessing and implementing the co-benefits of nature- based solutions in urban areas. Environ. Sci. Policy 77, 15–24
    Robins, J., and Wiersema, M. F (1995). "A Resource-Based Approach to the Multibusiness Firm: Empirical Analysis of Portfolio Interrelationships and Corporate Financial Performance," Strategic Management Journal (16:4), 1995, pp. 277-299.
    S. Kane, G. Yohe (2000). Societal adaptation to climate variability and change: an introduction. Climatw Change, 45 (1) , pp. 1-4
    S.E. Gill, J.F. Handley, A.R. Ennos and S. Pauleit. (2007). Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built environment.
    Sarah Taylor Lovell, John R. Taylor. (2013). Supplying urban ecosystem services through multifunctional green infrastructure in the United States. Landscape ecology.
    Sarigiannis, D. A., Kontoroupis, P., Nikolaki, S., Gotti, A., Chapizanis, D., & Karakitsios, S. (2017). Benefits on public health from transportrelated greenhouse gas mitigation policies in Southeastern European cities. Science of the Total Environment, 579, 1427–1438.
    Shahidan M. F. Potential of Individual and Cluster Tree Cooling Effect Performances Through Tree Canopy Density Model Evaluation in Improving Urban Microclimate. Curr World Environ 2015;10(2)
    Shakya, S. R. (2016). Benefits of low carbon development strategies in emerging cities of developing country: A case of Kathmandu. Journal of Sustainable Development of Energy, Water and Environment Systems, 4, 141–160.
    Shaw, C., Hales, S., Edwards, R., Howden-Chapman, P., & Stanley, J. (2018). What can fuel price increases tell us about the air pollution health co-benefits of a carbon price? Journal of Transport and Health, 8, 81–90.
    Shaw, C., Hales, S., Howden-Chapman, P., & Edwards, R. (2014). Health co-benefits of climate change mitigation policies in the transport sector. Nature Climate Change, 4, 427–433.
    Shuster WD, Morrison MA, & Webb R (2008). Front-loading urban stormwater management for success – a perspective incorporating current studies on the implementation of retrofit low-impact development. Cities and the Environment (CATE), 1, Article 8.
    Siegmeier, J., Mattauch, L., Franks, M., Klenert, D., Schultes, A., & Edenhofer, O. (2018). The fiscal benefits of stringent climate change mitigation: An overview. Climate Policy, 18, 352–367.
    Simonet, G., Delacote, P., & Robert, N. (2016). On managing co-benefits in REDD+ projects. International Journal of Agricultural Resources, Governance and Ecology, 12, 170–188.
    Skelhorn, C., Lindley, S. & Levermore, G. (2014) The impact of vegeta-tion types on air and surface temperatures in a temperate city: a finescale assessment in Manchester, UK. Landscape and Urban Planning,121, 129–140
    Strassburg, B. B., Rodrigues, A. S., Gusti, M., Balmford, A., Fritz, S., Obersteiner, M., … Brooks, T. M. (2012). Impacts of incentives to reduce emissions from deforestation on global species extinctions. Nature Climate Change, 2(5), 350–355.
    Subhash Sharma (2005). 呂金河譯,多變量分析,台中,滄海書局。
    Tallis, M., Taylor, G., Sinnett, D., Freer-Smith, P., 2011. l Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments, Landscape Urban Planning. 103: 129-138.
    Tanriverdi H (2006). Performance effects of information technology synergies in multibusiness firms. MIS Quart 30(1):57–77
    through agroforestry and ecosystem conservation. In P.K.R. Nair and D. Garnty (Eds.),Agroforestry-The
    Todd Litman, Victoria Transport Policy Institute(2020). Evaluating Public Transit Benefits and Costs Best Practices Guidebook.
    Tomscha, S. A., and S. E. Gergel (2016). Ecosystem service trade-offs and synergies misunderstood without landscape history. Ecology and Society 21(1):43.
    Tratalos, J., Fuller, R.A., Warren, P.H., Davies, R.G.,and Gaston, K.J. (2007). Urban form, biodiversity potential and ecosystem services, Landscape and Urban Planning, 83(4): 308-317.
    Turner, K. G., Odgaard, M. V., Bocher, P. K., Dalgaard, T., Svenning, J.-C. (2014). Bundling ecosystem services in Denmark: Trade-offs and synergies in a cultural landscape. Landscape and Urban Planning, 125: 89-104.U.S.
    Urban Design London (2018). Designing Rain Gardens: A Practical Guide. https://www.urbandesignlondon.com/library/sourcebooks/designing-rain-gardens-practical-guide/.
    V.M. Gómez-Muñoz, M.A. Porta-Gándara , J.L. Fernández (2010). Effect of tree shades in urban planning in hot-arid climatic regions. Landscape and Urban Planning, Volume 94, Issues 3–4, 15 March 2010, Pages 149–157
    van Vliet, O., Krey, V., McCollum, D., Pachauri, S., Nagai, Y., Rao, S., & Riahi, K. (2012). Synergies in the Asian energy system: Climate change, energy security, energy access and air pollution. Energy Economics, 34, 470–480.
    Vandenberghe, D., & Albrecht, J. (2018). Tackling the chronic disease burden: Are there co-benefits from climate policy measures? European Journal of Health Economics, 19, 1259–1283.
    Verchot, L.V., Van Noordwijk, M., Kandji, S. et al(2007). Climate change: linking adaptation and mitigation through agroforestry. Mitig Adapt Strat Glob Change 12, 901–918
    von Eye A, Schuster C, Rogers WM (1998). Modelling synergy using manifest categorical variables. Int J Behav Dev 22(3):537–557
    Wang, Z., Cui, X., Yin, S. et al. Characteristics of carbon storage in Shanghai’s urban forest. Chin. Sci. Bull. 58, 1130–1138 (2013).
    Wang, Z., Cui, X., Yin, S., Shen, G. R., Han, Y. J. and Liu, C. J. (2013). Characteristics of carbon storage in Shanghai’s urban forest. Science Bulletin, 58(10), 1130-1138
    Warren, P. S., Ryan, R. L., Susannah B. Lerman, S. B. and Kate A. Tooke, K. A. (2011). Social and institutional factors associated with land use and forest conservation along two urban gradients in Massachusetts. Landscape and Urban Planning, 102(2): 82-92.
    Wen Liu, Weiping Chen, Chi Peng. (2014). Assessing the effectiveness of green infrastructures on urban flooding reduction: A community scale study. Ecological Modelling.
    Wenger, K.F. (1984). Forestry Handbook. New York: John Wiley and Sons.
    Whitford, V., Ennos, A.R., and Handley, J.F. (2001). "City form and natural process" - indicators for the ecological performance of urban areas and their application to Merseyside, UK, Landscape and Urban Planning, 57: 91-103.
    Wiebke Klemm, Bert G. Heusinkveld, Sanda Lenzholzer, Bert van Hove. (2015). Street greenery and its physical and psychological impact on thermal comfort. Landscape and Urban Planning.
    Wilbanks, T.J.; Kane, S.M.; Leiby, P.N.; Perlack, R.D.; Settle C.; Shogren, J.F.; Smith, J.B. Possible responses to global climate change: Integrating mitigation and adaptation. Environ. Sci. Policy Sustain. Dev. 2003, 45, 28–38.
    Wolfram, M. (2019). Assessing transformative capacity for sustainable urban regeneration: A comparative study of three South Korean cities. Ambio 48, 478–493
    Wolkinger, B., Haas, W., Bachner, G., Weisz, U., Steininger, K., Hutter, H. P., … Reifeltshammer, R. (2018). Evaluating health co-benefits of climate change mitigation in urban mobility. International Journal of Environmental Research and Public Health, 15(5), 880
    Y. Liu, T. Li, H. Peng (2018). A new structure of permeable pavement for mitigatingurban heat island, Sci. Total Environ. 634:1119-1125
    Yahoo, M., & Othman, J. (2017). Employing a CGE model in analysing the environmental and economy-wide impacts of CO2 emission abatement policies in Malaysia. Science of the Total Environment, 584-585, 234–243.
    Yip, C. S. C., Crane, G., & Karnon, J. (2013). Systematic review of reducing population meat consumption to reduce greenhouse gas emissions and obtain health benefits: Effectiveness and models assessments. International Journal of Public Health, 58(5), 683– 693.
    Zapata, C., Muller, N., & Kleeman, M. J. (2013). PM2.5 co-benefits of climate change legislation part 1: California’s AB 32. Climatic Change, 117, 377–397
    Zhang, Y., Bowden, J. H., Adelman, Z., Naik, V., Horowitz, L. W., Smith, S. J., & West, J. J. (2016). Co-benefits of global and regional greenhouse gas mitigation for US air quality in 2050. Atmospheric Chemistry and Physics, 16, 9533–9548.
    Zoe G. Davies, Jill L. Edmondson, Andreas Heinemeyer, Jonathan R. Leake and Kevin J. Gaston. (2011). Mapping an urban ecosystem service: quantifying above-ground carbon storage at a city-wide scale. Journal of Applied Ecology.
    Zou, Z.D., Yang, Y.J., Qiu, G.Y., 2019. Quantifying the evapotranspiration rate and its cooling effects of urban hedges based on three-temperature model and infrared remote sensing. Remote Sens. 202 (11), 2.
    Description: 碩士
    國立政治大學
    地政學系
    108257010
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108257010
    Data Type: thesis
    DOI: 10.6814/NCCU202101756
    Appears in Collections:[地政學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    701001.pdf7631KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback