English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 109952/140887 (78%)
Visitors : 46350797      Online Users : 1283
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/147300


    Title: 超導量子位元控制脈衝之優化
    Optimizing control pulses for superconducting qubits
    Authors: 吳岱家
    Wu, Dai-Jia
    Contributors: 陳啟東
    林瑜琤

    Chen, Chii-Dong
    Lin, Yu-Cheng

    吳岱家
    Wu, Dai-Jia
    Keywords: 超導量子位元
    約瑟芬接面
    絕熱邏輯閘導數去除法
    克里福操作誤差
    Superconducting qubit
    Transmon
    Josephson junction
    Deviative Removal by Adiabatic Gate(DRAG)
    Error per Clifford
    Date: 2023
    Issue Date: 2023-09-01 16:29:11 (UTC+8)
    Abstract: 在 2019 年底 Google 藉由 49 個陣列量子位元(Qubit)實現了量子霸(Quantum
    Supremacy)一詞後世界各國爭相研究量子電腦這一門相當先進的技術。隨著時間緩慢推移研究技術逐漸成長,現在一部量子電腦中的量子位元最多已經來到了 433 個(IBM Osprey),在台灣也有許多研究機構正在努力研究中像是中央研究院、鴻海研究院等等。
    超導量子位元就像傳統 LC 電路,在進入超導態後因為約瑟芬接面(Josephson
    Junction)的特性,使得此位元中不同能階的能量差不再是等間距,我們就可以利用此特性來操作位元在特定能階上躍遷。在操作時我們需要在極低溫且極短的時間內精準操控每一顆量子位元,也就是將一段微波脈衝輸進此位元的操作閘,藉由此脈衝提供位元量子態改變所需要的能量。目前大多數的研究提供了精準的微波控制方法「絕熱邏輯閘導數去除法」(Derivative Removal by Adiabatic Gate, DRAG),藉由在波形中增加了特定比例的正交部分與提供隨波型函數變化的頻率,使其能夠更精準操控位元。
    在本論文當中會先借一般高斯波形脈衝討論克里福操作誤差(Error per Clifford)與脈衝長度的關係,再以其與 DRAG 方法生成之脈衝所得結果進行比較。接著在控制脈衝長度下,使用 DRAG 方法以其不同的正交比例作為變因討論何種比例會生成最低克里福操作誤差之脈衝。經過了前述兩個實驗我們可以控制許多影響誤差的因素,我們將在這些實驗結果上以不同的脈衝波形做為實驗變因,討論哪種波形對控制位元躍遷的幫助最大,最後為此波型尋找其作為脈衝最適合的波寬。
    最後經由比對在相同脈衝長度為條件下優化後的 DRAG 脈衝與一般高斯波形脈衝,我們成功將克里福操作誤差由 0.01285 ± 0.0006 優化至 0.00798 ± 0.0001,降低約38%。
    At the end of 2019, Google achieved quantum supremacy using 49-qubit arrays, sparking a global race among countries to study quantum computers, an advanced technology. As time flows, research in this field gradually grew, and now quantum computers can have up to 433 qubits (IBM Osprey). In Taiwan, many research institutions, such as Academia Sinica and Foxconn Research Institute, are actively engaged in quantum computing research.
    Superconducting qubits are similar to traditional LC circuits. When in a superconducting state, these qubits exhibit specific transition frequencies due to the characteristics of Josephson junctions. In operation, precise control over each qubit is required within extremely low temperatures and short time frames. It involves applying microwave pulses into the control gate, to induce an energy change in its quantum state. Most research has provided a precise microwave control method called ”Derivative Removal by Adiabatic Gate, DRAG,” which involves adding specific proportions of a quadrature component to the waveform and providing a frequency that varies with the waveform function to achieve more accurate qubit control.
    In this thesis, we first discuss a relationship between the error per Clifford and the pulse duration by a conventional Gaussian waveform control pulse. We compare the results obtained using DRAG-generated pulses with those obtained using conventional pulses. Next, under a controlled pulse duration, we vary the quadrature proportions of the DRAG method to determine which proportion generates the lowest error per Clifford. By controlling various factors that affect errors through these experiments, we will try to explore which pulse waveform contributes the most to controlling qubit transitions and finally find the most suitable pulse width for this waveform.
    Finally, by comparing the optimized DRAG pulse with the general Gaussian pulse under the same gate time condition, we successfully optimized the error per Clifford from 0.01285±0.0006 to 0.00798±0.0001, reducing about 38%.
    Reference: [Chen et al., 2016] Chen, Z., Kelly, J., Quintana, C., Barends, R., Campbell, B., Chen, Y., Chiaro, B., Dunsworth, A., Fowler, A., Lucero, E., et al. (2016). Measuring and suppressing quantum state leakage in a superconducting qubit. Physical review letters, 116(2):020501.

    [Chow et al., 2010] Chow, J. M., DiCarlo, L., Gambetta, J. M., Motzoi, F., Frunzio, L., Girvin, S. M., and Schoelkopf, R. J. (2010). Optimized driving of superconducting artificial atoms for improved single-qubit gates. Physical Review A, 82(4):040305.

    [Gambetta et al., 2011] Gambetta, J. M., Motzoi, F., Merkel, S., and Wilhelm, F. K. (2011). Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator. Physical Review A, 83(1):012308.

    [Motzoi et al., 2009] Motzoi, F., Gambetta, J. M., Rebentrost, P., and Wilhelm, F. K. (2009). Simple pulses for elimination of leakage in weakly nonlinear qubits. Physical review letters,103(11):110501.

    [Rol et al., 2017] Rol, M., Bultink, C. C., O’Brien, T. E., De Jong, S., Theis, L. S., Fu, X., Luthi, F., Vermeulen, R. F., De Sterke, J., Bruno, A., et al. (2017). Restless tuneup of high-fidelity qubit gates. Physical Review Applied, 7(4):041001.

    [Schuster et al., 2005] Schuster, D., Wallraff, A., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., Girvin, S., Schoelkopf, and RJ (2005). ac stark shift and dephasing of a superconductingqubit strongly coupled to a cavity field. Physical Review Letters, 94(12):123602.
    Description: 碩士
    國立政治大學
    應用物理研究所
    110755011
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110755011
    Data Type: thesis
    Appears in Collections:[應用物理研究所 ] 學位論文

    Files in This Item:

    File Description SizeFormat
    501101.pdf19485KbAdobe PDF290View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback