English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 93861/124308 (76%)
Visitors : 28930944      Online Users : 561
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 期刊論文 >  Item 140.119/18839
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/18839

    Title: Using Genetic Algorithms to Parameters (d r) Estimation for Threshold Autoregressive Models
    Authors: Wu, Berlin
    Chung, Chih-Li
    Keywords: Genetic algorithms;Threshold autoregressive models;Fitness function;Exchange rate
    Date: 2002-01
    Issue Date: 2008-12-24 13:38:51 (UTC+8)
    Abstract: Threshold autoregressive model (TAR model) has certain characteristics due to which linear models fail to fit a nonlinear time series, while the problem of how to find an appropriate threshold value still attracts many researchers’ attention. In this paper, we apply the genetic algorithms to estimate the threshold and lag parameters r and d for TAR models. The selection operator is formulated following Darwin's principle of survival of the fittest to guide the trek through a search space. The crossover and mutation operators have been inspired by the mechanisms of gene mutation and chromosome recombination.
    Relation: Computational Statistics and Data Analysis,38(3),315-330
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1016/S0167-9473(01)00030-5
    DOI: 10.1016/S0167-9473(01)00030-5
    Appears in Collections:[應用數學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    315-330.pdf176KbAdobe PDF505View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback