English  |  正體中文  |  简体中文  |  Items with full text/Total items : 88284/117783 (75%)
Visitors : 23395706      Online Users : 131
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/27060
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/27060


    Title: Recommender Agent Based on Social Network
    Authors: 楊亨利;Yang,Hsiao-Fang
    Keywords: recommender system;social network;chance discovery;trust
    Date: 2007-06
    Issue Date: 2009-01-17 16:06:40 (UTC+8)
    Abstract: Conventional collaborative recommendation approaches neglect weak relationships even when they provide important information. This study applies the concepts of chance discovery and small worlds to recommendation systems. The trust (direct or indirect) relationships and product relationships among customers are to find candidates for collaboration. The purchasing quantities and feedback of customers are considered. The whole similarities are calculated based on the model, brand and type of purchased product.
    Relation: New Trends in Applied Artificial Intelligence
    Lecture Notes in Computer Science Volume 4570, 2007, pp 943-952
    Data Type: article
    Appears in Collections:[資訊管理學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    6_94.pdf448KbAdobe PDF425View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback