English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 92604/122928 (75%)
Visitors : 26749573      Online Users : 421
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/27077
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/27077

    Title: The Evolution of Internal Representation
    Authors: Tsaih,Rua-Huan
    Keywords: Internal representation;Recruiting mechanism;Pruning mechanism;Generalized delta rule
    Date: 2003-08
    Issue Date: 2009-01-17 16:08:18 (UTC+8)
    Abstract: To develop an appropriate internal representation, a deterministic learning algorithm that can adjust not only weights but also the number of adopted hidden nodes is proposed. The key mechanisms are 1. (1) the recruiting mechanism that recruits proper extra hidden nodes, and 2.(2) the reasoning mechanism that prunes potentially irrelevant hidden nodes. This learning algorithm can make use of external environmental clues to develop an internal representation appropriate for the required mapping. The encoding problem and the parity problem are used to demonstrate the performance of the proposed algorithm. The experimental results are clearly positive.
    Relation: Mathematical and Computer Modelling, 38(3), 339-350
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1016/S0895-7177(03)90092-6
    DOI: 10.1016/S0895-7177(03)90092-6
    Appears in Collections:[資訊管理學系] 期刊論文

    Files in This Item:

    File SizeFormat
    11.pdf950KbAdobe PDF1149View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback