English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 92664/122999 (75%)
Visitors : 26929452      Online Users : 370
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/27246
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/27246

    Title: Sensitivity Analysis and Neural Networks
    Authors: 蔡瑞煌;林修葳;林義評
    Keywords: 敏感度分析;神經網路;選擇權
    Sensitivity analysis;Neural Networks;Options
    Date: 2000-12
    Issue Date: 2009-01-17 16:24:16 (UTC+8)
    Abstract: 本研究探討敏感度分析之技術是否能讀取神經網路所學得之知識,以及是否能用來評估神經網路之學習績效。本研究以選擇權定價公式(Black-Scholes formula)之模擬為研究對象。本研究之實驗結果顯示敏感度分析之技術能讀取神經網路所學得之知識,也能用來評估神經網路之學習績效。
    This study presents the methodology of sensitivity analysis and explores whether it can be an alternative evaluation criterion as well as a tool to "read" artificial neural networks' knowledge. The simulation of the Black-Scholes formula is employed for this object. Since, in the Black-Scholes formula, the mapping relationship between the call price and five relevant variables is a mathematically close form, it is feasible to verify the validity of the methodology of sensitivity analysis. The experiment results are promising; they show that both values of the sensitivity analysis and the partial derivative of the Black-Scholes formula are consistent. Furthermore, the sensitivity analysis can be an alternative criterion for comparing the effectiveness of ANNs.
    Relation: 資管評論, 10, 1-20
    Data Type: article
    Appears in Collections:[資訊管理學系] 期刊論文

    Files in This Item:

    File SizeFormat
    13.pdf398KbAdobe PDF1184View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback