English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 109948/140897 (78%)
Visitors : 46099564      Online Users : 761
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/30576


    Title: 協同設計創新對於半導體價值鏈之影響 - 以 DFM 為例
    Impact of Design Collaboration Innovation for Semiconductor Value Chain: Take DFM (Design for Manufacturing) as Case
    Authors: 申雲勇
    Shen, Yun-Yong
    Contributors: 溫肇東
    Wen, Chao-Tung
    申雲勇
    Shen, Yun-Yong
    Keywords: 協同設計
    創新
    半導體價值鏈
    奈米積體電路
    微影技術
    Design Collaboration
    Innovation
    Semiconductor Value Chain
    DFM
    Design for Manufacturing
    lithography
    Date: 2005
    Issue Date: 2009-09-12 12:26:21 (UTC+8)
    Abstract: 隨著奈米積體電路時代的來臨, 在微影技術,半導體製造技術和電路設計技術的進步已導致新的機會來整合大部份在系統中被使用到的電子功能。例如經過SoC技術提供的單晶片解決方案 - 由可重複使用的矽智財共同構成的單晶片系統 (舉例來說: 微處理器矽智財、數位信號處理矽智財、記憶體矽智財和其他的明星矽智財共同構成的單晶片系統) 可以和其他的整合系統溝通。這種包括多項技術的整合方式漸漸增加DFM 的要求, 進而創造在半導體價值鏈之中新虛擬的整合鏈模式。
    對於先進產品發展, 經由現存的分解方式價值鏈﹐從每個單一鏈節 (無晶圓設計,矽智財,電路設計自動化, 設計服務,光罩製造,晶圓製造和封裝/測試)所創造的聯合價值無法在短時間超越IDM (舉例來說: 無法提供較早的上市時間)。因此針對先進產品突破性的發展,整合每個單一鏈節變成重要的主題。本研究針對這一個整合議題提供一個新的設計合作平台作為解決方案。
    研究將以 DFM議題在半導體價值鏈中的影響作為分析。針對公司和公司間的溝通界面, 設計合作平台將會提供更多的併進價值鏈知識整合。
    Advances in lithography, semiconductor processes and circuit design techniques at the nanometer IC era have led to new opportunities to integrate most of the electronic functions encountered in systems. The single-chip solution through System on Chip (SoC) which comprises reusable Silicon IP (SIP) such as Microprocessor, Digital Signal Processing (DSP), Memory and other Star SIPs enabling the system to communicate with other systems. This multidisciplinary approach calls for increasing Design for Manufacturing (DFM) needs among semiconductor value chain to enable a whole new virtual integrated chain.
    Through the existing disintegrated value chain, the synergized value contributed from each single node (fabless, SIP provider, EDA, design service, mask foundry, wafer foundry and assembly/test) could not fulfill the time-to-market benefit as the IDM provides for advanced product development. To integrate each single chain node becomes
    the important topic for advanced product breakthrough. A new design collaboration platform is proposed to address this integration issue.
    Study was conducted among this semiconductor value chain for the DFM (Design for Manufacturing) issue. The design collaboration platform addresses the inter-firm communication interface among the value chain to provide more concurrent value chain knowledge integration.
    By applying Fine’s double helix model with the evidence from DFM case, I successfully predict the re-integration trend of semiconductor industry post the disintegration model.
    "Table of Contents
    ENGLISH ABSTRACT.....................................................................................................2
    CHINESE ABSTRACT.....................................................................................................5
    TABLE OF CONTENTS..................................................................................................7
    TABLE OF FIGURE AND TABLE.................................................................................9
    CHAPTER 1: INTRODUCTION...................................................................................10
    1.1 SEMICONDUCTOR IC DESIGN TREND..........................................................................10
    1.2 EVOLUTION OF THE SEMICONDUCTOR INDUSTRY VALUE CHAIN.............................11
    1.3 ISSUE OF NANOMETER IC DESIGN – MAINLY THE LITHOGRAPHY ISSUE..................14
    1.4 ISSUE OF SEMICONDUCTOR VALUE CHAIN.................................................................16
    1.5 ISSUE OF THE DESIGN PRODUCTIVITY GAP.................................................................17
    1.6 OBJECTIVE OF THIS STUDY.........................................................................................18
    1.7 METHODOLOGY OF THIS STUDY.................................................................................20
    CHAPTER 2: EVOLUTION & BUSINESS MODEL OF SEMICONDUCTOR INDUSTRY.......................................................................................................................21
    2.1 SEMICONDUCTOR INDUSTRY EVOLUTION...................................................................21
    2.1.1 Phase 1: Fully Integrated Design and Manufacture...........................................22
    2.1.2 Phase 2: Design and Manufacture Separate: Fabless & Foundry......................22
    2.1.3 Phase 3: Design and Intellectual Property (IP) Separate: Chipless...................23
    2.2 BUSINESS MODEL OF SEMICONDUCTOR INDUSTRY....................................................23
    2.2.1 Integrated Device Manufacturer (IDM)..............................................................24
    2.2.2 Fablite..................................................................................................................26
    2.2.3 Fabless.................................................................................................................26
    2.2.4 Intellectual Property Provider.............................................................................29
    2.2.5 Service: Design & Manufacturing.......................................................................32
    2.3 SEMICONDUCTOR VALUE CHAIN RELATIONSHIP.......................................................33
    CHAPTER 3: ANALYSIS OF SEMICONDUCTOR VALUE CHAIN.....................35
    3.1 STATIC ANALYSIS OF SEMICONDUCTOR VALUE CHAIN.............................................35
    3.2 FORCES INFLUENCING THE SEMICONDUCTOR VALUE CHAIN....................................38
    3.2.1 Threat of New Entrants........................................................................................38
    3.2.2 Power of Suppliers...............................................................................................40
    3.2.3 Power of Buyers...................................................................................................41
    3.2.4 Availability of Substitutes....................................................................................42
    3.2.5 Competitive Rivalry.............................................................................................42
    3.2.6 Five-force Analysis of Semiconductor Value Chain............................................43
    3.3 DYNAMIC ANALYSIS OF SEMICONDUCTOR VALUE CHAIN.........................................44
    3.3.1 Structure in Semiconductor Markets by Competitive Intensity Quadrant Framework...........................................................................................................................45
    3.3.2 Architecture and Innovation in Semiconductor Markets......................................48
    3.3.3 Clockspeed in Semiconductor Markets.................................................................51
    3.4 DISTURBANCES THROUGHOUT THE SEMICONDUCTOR VALUE CHAIN.......................53
    3.5 BREAKING DOWN SEMICONDUCTOR VALUE CHAIN DYNAMICS................................58
    3.5.1 Internal Clockspeed.............................................................................................58
    3.5.2 External Clockspeed............................................................................................58
    3.5.3 Collaborative Value Chain Development............................................................59
    CHAPTER 4: DESIGN COLLABORATION..............................................................61
    4.1 ORGANIZATION PROXIMITY FOR PRODUCT DEVELOPMENT......................................61
    4.2 AGE OF COLLOCATION INNOVATION..........................................................................62
    4.3 AGE OF COLLABORATIVE INNOVATION......................................................................64
    4.3.1 Organizing and Managing a Co-Wired Team......................................................65
    4.3.2 Co-Wired Team Case – HP Taps Co-Wired Team for DeskJet Printer Development........................................................................................................................67
    4.4 DESIGN COLLABORATION PLATFORM........................................................................69
    4.5 DESIGN COLLABORATION SCENARIO FOR SEMICONDUCTOR INDUSTRY...................70
    4.5.1 Collaboration between Fabless and Foundy.......................................................71
    4.5.2 Collaboration among EDA, Fabless and Foundry..............................................74
    CHAPTER 5: DFM (DESIGN FOR MANUFACTURING) AS THE CASE............76
    5.1 DFM EVOLUTION.........................................................................................................76
    5.2 ADDRESSING YIELD IN DESIGN....................................................................................79
    5.3 SOPHISTICATED DESIGN RULE SETS...........................................................................80
    5.4 COLLABORATION BETWEEN FOUNDRY AND EDA – RESOLUTION ENHANCEMENT TECHNOLOGY (RET).....................................................................................82
    5.5 COLLABORATION AMONG FABLESS, FOUNDRY AND EDA..........................................84
    5.6 FEED-FORWARD COLLABORATION FROM FABLESS TO FOUNDRY – DESIGN-ENABLED LITHOGRAPHY..........................................................................................................87
    5.7 FEEDBACK COLLABORATION FROM FOUNDRY TO FABLESS – LITHOGRAPHY-ENABLED DESIGN......................................................................................................................89
    5.8 DESIGN COLLABORATION AS THE INNOVATION PLATFORM TO CROSS THE VALUE CHAIN FOR DFM.........................................................................................................91
    5.9 Technological Innovation.........................................................................................93
    5.9.2 Competitive Intensity............................................................................................94
    5.10 Collaborative Value Chain Development.................................................................95
    5.11 CASE OF DESIGN COLLABORATION PLATFORM – DFM DESIGN SUPPORT ECOSYSTEM BY TSMC...........................................................................................................100
    CHAPTER 6: CONCLUSION AND IMPLICATIONS.............................................106
    6.1 APPLY DOUBLE HELIX MODEL TO PREDICT THE VALUE CHAIN TREND....................106
    6.2 PROVIDE DESIGN COLLABORATION PLATFORM TO FACILITATE THE NANOMETER DESIGN TRANSITION..........................................................................................107
    6.3 IMPLICATION FOR MANAGING SUCCESSFUL DFM....................................................108
    REFERENCES...............................................................................................................110
    Table of Figure and Table
    FIGURE 1-1: SOC DESIGN..................................................................................................11
    FIGURE 1-2: DISINTEGRATION OF SEMICONDUCTOR VALUE CHAIN...................................13
    FIGURE 1-3: SUBWAVELENGTH ISSUE................................................................................15
    FIGURE 1-4: MASK MANUFACTURING...............................................................................16
    FIGURE 1-5: PATTERN IS LOST FOR ADVANCED TECHNOLOGY...........................................16
    FIGURE 1-6: MASK MANUFACTURING BETWEEN STAFF MONTH VS. LOGIC TRANSISTORS GROWTH (SOURCE : SEMATECH)...............................................................................18
    FIGURE 1-7: EVOLUTION OF SEMICONDUCTOR VALUE-CHAIN..........................................19
    FIGURE 2-1: SEMICONDUCTOR COMPANY ECOLOGY.........................................................21
    TABLE 2-1: 2005 WORLDWIDE TOP 50 SEMICONDUCTOR..................................................25
    TABLE 2-2: 2005 TOP 40 FABLESS IC SUPPLIERS..............................................................28
    TABLE 2-3: 2004 TOP 10 SEMICONDUCTOR IP VENDOR....................................................30
    TABLE 2-4: 2004 WORLDWIDE TOP 35 FABLESS IC SUPPLIER...........................................31
    FIGURE 2-2: SEMICONDUCTOR VALUE CHAIN RELATIONSHIP...........................................34
    FIGURE 3-1: PORTER’S 5-FORCES MODEL..........................................................................36
    TABLE 3-1: TOP 8 IC PRODUCT TYPE IN 2005....................................................................38
    FIGURE 3-2: FIVE-FORCE ANALYSIS OF SEMICONDUCTOR VALUE CHAIN..........................43
    FIGURE 3-3: DOUBLE HELIX OF INDUSTRY CYCLING.........................................................53
    FIGURE 3-4: SEMICONDUCTOR INDUSTRY VALUE CHAIN..................................................54
    FIGURE 3-5: DOUBLE HELIX OF SEMICONDUCTOR VALUE CHAIN DYNAMICS...................57
    FIGURE 4-1: INTERACTION ACTIVITIES BETWEEN FOUNDRY AND FABLESS.........................72
    FIGURE 4-2: INTERACTION ACTIVITIES AMONG FABLES, IP/LIBRARY PROVIDER, MASK HOUSE, FOUNDRY, ASSEMBLY HOUSE, TESTING HOUSE AND CUSTOMER.....................72
    FIGURE 5-1: AT NANOMETER NODES, DESIGNERS FACE PHYSICAL AND ELECTRICAL EFFECTS THAT SIGNIFICANTLY INCREASE THE LIKELIHOOD OF SILICON FAILURES WITH CONVENTIONAL DEVELOPMENT METHODOLOGIES.....................................................77
    FIGURE 5-2: AT NANOMETER NODES, PERFORMANCE AND LITHOGRAPHY EFFECTS BECOME KEY INFLUENCERS OF YIELD, REQUIRING MORE COMPREHENSIVE YIELD-ENHANCEMENT APPROACHES.....................................................................................79
    FIGURE 5-3: ITRS 2003 ROADMAP SCENARIO....................................................................83
    FIGURE 5-4: DESIGN-AWARE PROCESSING PROMISES TO LIMIT INCREASINGLY LONG RET RUN TIMES AND HELP OPTIMIZE KEY DESIGN STRUCTURES.........................................88
    FIGURE 5-5: A FULLY INTEGRATED PRE-TAPEOUT DESIGN FLOW MINIMIZES COSTLY RE-DESIGNS AND MASKS LOST TO ERRONEOUS DATA.......................................................90
    FIGURE 5-6: COLLABORATION AMONG FABLES, EDA VENDOR AND FOUNDRY..................92
    FIGURE 5-7: MANUFACTURING KNOWLEDGE MOVEMENT ALONG THE VALUE CHAIN.........93
    FIGURE 5-8: DOUBLE HELIX OF SEMICONDUCTOR VALUE CHAIN DYNAMICS CONSIDERING DFM..........................................................................................................................96
    FIGURE 5-9: TSMC.COM PORTAL....................................................................................101
    FIGURE 5-10: TSMC ONLINE PORTAL.............................................................................102
    FIGURE 5-11: TSMC DFM-COMPLIANCE INITIATIVE......................................................103
    Reference: 1. Chang, Jonathan Yung-Cheng & Cheng, Fan-Tien (2005), “Framework Development of an Engineering-Chain-Management-System for the Semiconductor Industry”, 3rd IEEE International Conference on Industrial Informatics, 2005.
    2. Chiang, Shang-yi (2001), “Foundries and the Dawn of an Open IP Era”, IEEE Computer, April 2001, pp. 43-46
    3. Daetz, D. (1987), “The Effect of Product Design on Product Quality and Product Cost,” Quality Progress, Jun. 1987, pp. 40-44
    4. Edelstone, Mark (2003), “Are IDMs Obsolete?”, Morgan Stanley Presentation, October 8, 2003
    5. Fabrycky, W. J. (1985), “System Life-Cycle Engineering: Bringing Competitive Products into Being”, Workshop on Opportunities for Engineering Research, Focused on Emerging Engineering Systems, Washington, D. C., July 15, 1985.
    6. Fabrycky, W. J. (1987), “Designing for the Life-cycle,” Mechanical Engineering, Jan, 1987, pp. 72-74.
    7. Fine, Charles H (1998), Clockspeed – Winning Industry Control in the Age of Temporary advantage, Preseus Books.
    8. Kirkland, C. (1988), “Meet Two Architects of Design-Integrated
    Manufacturing,” Plastics World, Dec. 1988, pp. 46-50.
    9. SEMATECH (1995), Personal Communication from Dick Bushroe.
    10. Staud, Wolf & Chen, Fung & Hsu, Stephen & Broeke, Doug van den (2005). “Subwavelength Imaging at k1<0.3”. Semiconductor International. Santa Clara, Calif. USA.
    11. Stoll, H. W. (1988), “Design for Manufacture,” Tools and Manufacturing Engineers Handbook: Manufacturing Management, vol. 5, 1988, pp. 13-1-13-32.
    12. Stoll, H. W. (1988), “Design for Manufacturing,” Manufacturing
    Engineering, Jan. 1988, pp. 67-73.
    13. Stoll, H. W. (1988),”Design for Manufacture,” Tool and Manufacturing Engineers Handbook, vol. 5, SME Press, 1988, pp. 13-1-13-32.
    14. Stoll, H. W. (1990), “Design for Manufacturing,” Simultaneous Engineering, C. W. Allen ed., SME Press, 1990, pp. 23-29.
    15. Su, Yea-Huey & Guo, Ruey-Shan & Chang, Shi-Chung (2004), "Inter-firm Collaboration Mechanism in Process Development and Product Design between Foundry and Fabless Design House" Proceedings of the 2004 IEEE Semiconductor Manufacturing Technology Workshop (SMTW 2004), pp. 47-50, Hsinchu Taiwan, September 9-10, 2004.
    16. Utterback, James (1996). Mastering the Dynamics of Innovation, Harvard Business School Press, 1996.
    Description: 碩士
    國立政治大學
    經營管理碩士學程(EMBA)
    92932923
    94
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0092932923
    Data Type: thesis
    Appears in Collections:[經營管理碩士學程EMBA] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2402View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback