English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 109952/140890 (78%)
Visitors : 46263885      Online Users : 915
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/32565
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/32565


    Title: 有關廣義范氏矩陣的研究:其行列式、反矩陣、LU分解、及應用
    Studies on Generalized Vandermonde Matrices: Their Determinants, Inverses, Explicit LU Factorizations, with Applications
    Authors: 李宣助
    Hsuan-Chu,Li
    Contributors: 陳永秋
    李陽明

    Eng-Tjioe,Tan
    Young-Ming, Chen

    李宣助
    Hsuan-Chu,Li
    Keywords: 古典范氏矩陣
    廣義范氏矩陣
    全正廣義范氏矩陣
    行列式
    LU分解
    1-帶狀分解
    廣義范氏矩陣的反矩陣
    Schur 函數
    Kostka 數
    Date: 2006
    Issue Date: 2009-09-17 13:45:38 (UTC+8)
    Abstract: 古典及廣義的范氏矩陣普遍存在於數學之中,而且最近有多位作者對於它們的行列式、反矩陣、LU分解及應用等做了各種的研究。在這篇論文中我們主要探討兩個主題:一是廣義范氏矩陣的回顧,二是廣義范氏矩陣的不同分解。在第一個主題,我們僅利用數學歸納法來證明兩種已知型態的廣義范氏矩陣行列式的公式,與之前錢福林及Flowe-Harris的證明方法截然不同。在構成本篇論文主要結果的第二個主題中,我們致力於兩個目標:首先,我們探討某一特殊類的廣義范氏矩陣之轉置矩陣且成功地得到它的LU分解並將其明確地表示出來。更進一步地,我們將LU分解表示成1-帶狀矩陣的乘積並得到它的反矩陣。
    其二,我們考慮全正廣義范氏矩陣且在不使用Schur函數的情況下得到它唯一的LU分解,此結果優於Demmel-Koev需用到Schur函數的結果。同時,我們也得到該矩陣的行列式及反矩陣並將Schur函數明確地表示出來。基於上述結果,藉著將Schur函數展開,我們獲得一種計算Kostka數的方法。
    Classical and generalized Vandermonde matrices are ubiquitous in mathematics, and various studies on their
    determinants, inverses, explicit LU factorizations with
    applications are done recently by many authors. In this thesis we shall focus on two topics: One is generalized Vandermonde matrices revisited and the other is various decompositions of some generalized Vandermonde matrices. In the first topic, we prove the well-known determinant formulas of two types of generalized Vandermonde matrices using only mathematical induction, different from the proofs of Fulin Qian`s and Flowe-Harris`. In the second
    topic, which constitutes the main results of this thesis, we
    devote ourself to two themes. Firstly, we study a special class which is the transpose of the generalized Vandermonde matrix of the first type and succeed in obtaining its LU factorization in an explicit form. Furthermore, we express the LU factorization into 1-banded factorizations and get the inverse explicitly. Secondly, we consider a totally positive(TP) generalized Vandermonde matrix
    and obtain its unique LU factorization without using Schur
    functions. The result is better than Demmel and Koev`s which is involved Schur functions. As by-products, we gain the determinant and the inverse of the required matrix and express any Schur function in an explicit form. Basing on the above result, we obtain a way to calculate Kostka numbers by expanding Schur functions.
    Reference: [1] A. Björck, T. Elfving, Algorithms for confluent Vandermonde systems, Numer. Math. 21 (1973) 130-137.
    [2] A. Björck, V. Pereyra, Solution of Vandermonde systems of equations, Math. Comp. 24 (1970) 893-903.
    [3] Young-Ming Chen, Hsuan-Chu Li and Eng-Tjioe Tan, An explicit factorization of totally positive generalized Vandermonde matrices avoiding Schur functions, to appear in Applied Mathematics E-Notes.
    [4] J. Demmel, P. Koev, The accurate and efficient solution of a totally positive generalized Vandermonde linear system, SIAM J. Matrix Anal. Appl., Vol. 27, No. 1 (2005) 142-152.
    [5] M. El-Mikkawy, A. Karawia, Inversion of general tridiagonal matrices, Applied Mathematics Letters 19 (2006) 712-720.
    [6] Randolph P. Flowe, Gary A. Harris, A note on generalized Vandermonde determinant, SIAM J. Matrix Anal. Appl. Vol. 14, No. 4 (1993) pp. 1146-1151.
    [7] R. P. Grimaldi, Discrete and Combinatorial Mathematics, 2nd Ed., Addison-Wesley, Reading, MA, 1989.
    [8] Jian-min Han, The calculation of the generalized Vandermonde determinant, Journal of Baoji University of Arts and Sciences(Natural Science). Vol. 25. No. 1. (2005) 26-28 (in Chinese).
    [9] S. Lang, Linear Algebra, 3rd ed., Springer-Verlag, New York, 1987.
    [10] H. C. Li, A proof about the generalized Vandermonde determinant, Master
    Thesis, National Chengchi University, Mucha, Taipei, Taiwan (1994).
    [11] Hsuan-Chu Li, Eng-Tjioe Tan, On a special generalized Vandermonde matrix and its LU factorization, to appear in Taiwanese Journal of Mathematics.
    [12] C. L. Liu, Introduction to Combinatorial Mathematics, McGraw-Hill Book Company (1968).
    [13] Ronald E. Mickens, Difference Equations, Van Nostrand Reinhold Company, Inc., New York, 1987.
    [14] Janvier Nzeutchap, Frédéric Toumazet and Franck Butelle, Kostka numbers and Littlewood-Richardson coefficients: Distributed computation, Preprint (2007).
    [15] H. Oruç, G. M. Phillips, Explicit factorization of the Vandermonde matrix, Linear Algebra and Its Applications 315 (2000) 113-123.
    [16] Fulin Qian, Generalized Vandermonde determinant, Journal of Sichuan University Natural Science Edition Vol. 28, N0.1 (1991) pp. 36-40.
    [17] W. P. Tang, G. H. Golub, The block decomposition of a Vandermonde matrix and its applications, BIT 21 (1981) 505-517.
    [18] Richard P. Stanley, Enumerative Combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, Vol. 62, Cambridge University Press, Cambridge, 1990.
    [19] Loring W. Tu, A generalized Vandermonde determinant, arXiv:math.AC/0312446 v1 24 Dec 2003.
    [20] Luis Verde-Star, Inverses of generalized Vandermonde matrices, Journal of Mathematical Analysis and Applications 131, (1988) pp. 341-353.
    [21] Sheng-liang Yang, On the LU factorization of the Vandermonde matrix, Discrete Applied Mathematics 146 (2005) 102-105.
    [22] Sheng-liang Yang, Generalized Vandermonde matrices and their LU factorization, Journal of Lanzhou University of Technology, 2004 Vol. 30 No. 1 P. 116-119 (in Chinese, 廣義Vandermonde矩陣及其LU分解).
    [23] Y. Yang, H. Holtti, The factorization of block matrices with generalized geometric progression rows, Linear Algebra and Its Applications 387 (2004) 51-67.
    Description: 博士
    國立政治大學
    應用數學研究所
    90751502
    95
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0090751502
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    75150201.pdf89KbAdobe PDF2741View/Open
    75150202.pdf258KbAdobe PDF2765View/Open
    75150203.pdf163KbAdobe PDF2815View/Open
    75150204.pdf134KbAdobe PDF2997View/Open
    75150205.pdf150KbAdobe PDF21067View/Open
    75150206.pdf153KbAdobe PDF23161View/Open
    75150207.pdf135KbAdobe PDF2937View/Open
    75150208.pdf200KbAdobe PDF2975View/Open
    75150209.pdf260KbAdobe PDF21119View/Open
    75150210.pdf193KbAdobe PDF2949View/Open
    75150211.pdf107KbAdobe PDF2705View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback