English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 93218/123590 (75%)
Visitors : 27688616      Online Users : 129
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/32610
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/32610


    Title: 模糊時間數列分析與預測—以石油價格為例
    Fuzzy Time Series Analysis and Forcasting – with an Example of Oil Prices
    Authors: 陳蒼山
    Contributors: 吳柏林
    陳蒼山
    Keywords: 隸屬度函數
    模糊關係矩陣
    石油價格預測
    模糊命中
    Date: 2005
    Issue Date: 2009-09-17 13:50:40 (UTC+8)
    Abstract: 石油是維持人類生存必需的商品,是容易運輸、儲存、使用的能源。石油價格的漲跌,將直接或間接影響經濟成長與物價水準。以公司營運來說,對海運業、航空業、石油公司等石油高度相關行業來說,購油成本一直佔據公司總成本相當大的比例,因此石油價格的變動,將使得會計年度內的購油成本高低相差甚大,進而影響公司整體營運利潤,因此購油決策重要性自不待言。當預測油價會上漲時,則公司將會以較低的石油價格購入較多的石油事先加以貯存或使用,以降低全年購油成本與分散風險。本文嘗試著導入模糊統計的概念並建立多變量多階自廻歸模糊時間數列模式,以期應用在油價之預測。實證方面則收集紐約商品交易所 (NYMEX: New York Mercantile Exchange) 的每日原油收盤價原始資料,針對原油價格進行模糊時間數列分析與預測,並比較命中率、誤差率與準確度。相信這對於購油風險控管及降低成本,提高公司盈餘深具意義。
    Reference: 英文部份
    Arnold, S. (1990) Mathematical Statistics. Prentice Hall Inc.
    Chen, S. M. (1996) Forecasting enrollments based on fuzzy time series. Fuzzy Sets and Systems, 81, 311-319.
    Chiang, D., Chow, L., and Wang Y.(2000) Mining time series data by a fuzzy linguistic summary system. Fuzzy Sets and Systems, 112, 419-432.
    Graham, B. P. and Newell, R. B. (1989) Fuzzy adaptive control of a first-order process. Fuzzy Sets and Systems, 31, 47-65.
    Hendershot, G. and Placek, P. (Eds) (1981) Predicting Fertility. Lexington, MA: health and Co.
    K. Huarng(2001)Heuristic models of fuzzy time series for forecasting. Fuzzy Sets and Systems,123,369-386.
    Klir, G. F. and Folger, T. A. (1988) Fuzzy Sets, Uncertainly and Information. Englewood Cliffs, NJ:Prentice Hall.
    Lee, Y. C., Hwnag, C. and Shih, Y. P. (1994) A Combined Approach to Fuzzy Model Identification. IEEE Transactions on Systems, Man, and Cybernetics, Vol.24, No.5, 736-743.
    Manski, C. (1990) The Use of Intention Data to Predict Behavior: A Best Case Analysis. Journal of the American Statistical Association, 85, 934-940.
    Richard A. J. and Dean W. W. (2002) Applied Multivariate Statistics Analysis. 5th Edition. Prentice Hall Inc.
    Song, Q. and Chissom, B. S. (1993a) Forecasting enrollments with fuzzy time series—Part I. Fuzzy Sets and Systems, 54, 1-9.
    Song, Q. and Chissom, B. S. (1993b) Fuzzy time series and its models. Fuzzy Sets and Systems, 54, 269-277.
    Song, Q. and Chissom, B. S. (1994) Forecasting enrollments with fuzzy time series—Part II. Fuzzy Sets and Systems, 62, 1-8.
    Song, Q., Leland, R. P. and Chissom, B. S. (1997) Fuzzy stochastic fuzzy time series and its models. Fuzzy Sets and Systems, 88, 333-341.
    Tong, R. M. (1978) Synthesis of fuzzy models for industrial processes. Int. J. Gen. Syst., Vol.4, 143-162.
    Tseng, F., Tzeng, G., Yu, H. and Yuan, B. (2001) Fuzzy ARIMA model for forecasting the foreign exchange market. Fuzzy Sets and Systems, 118, 9-19.
    Tseng, F., and Tzeng, G.(2002)A fuzzy seasonal ARIMA model for forecasting. Fuzzy Sets and Systems, 126,367-376.
    Wu, B. and Chen, M. (1999) Use of fuzzy statistical technique in change periods detection of nonlinear time series. Applied Mathematics and Computation, 99,
    241-254.
    Wu, B. and Hung, S. (1999) A fuzzy identification procedure for nonlinear time series: with example on ARCH and bilinear models. Fuzzy Sets and Systems, 108, 275-287.
    Xu, C. W. and Lee, Y. Z. (1987) Fuzzy Model Identification and Self-learning for Dynamic Systems. IEEE Transactions on Systems, Man, and Cybernetics, Vol. SCM-17, 683-689.
    Zadeh, L. A. (1965) Fuzzy Sets. Information and Control, 8, 338-353.
    Zimmermann, H. J. (1991) Fuzzy Set Theory and Its Applications. Boston: Kluwer Academic.
    中文部份
    吳柏林 (2005) 模糊統計導論, 方法與應用. 台北:五南書局
    吳柏林 (1995) 時間數列分析導論. 台北:華泰書局
    顏月珠 (1992) 商用統計學. 台北:三民書局
    Description: 碩士
    國立政治大學
    應用數學研究所
    92751014
    94
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0927510141
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    51014101.pdf49KbAdobe PDF786View/Open
    51014102.pdf445KbAdobe PDF750View/Open
    51014103.pdf377KbAdobe PDF691View/Open
    51014104.pdf383KbAdobe PDF987View/Open
    51014105.pdf572KbAdobe PDF2804View/Open
    51014106.pdf540KbAdobe PDF874View/Open
    51014107.pdf396KbAdobe PDF844View/Open
    51014108.pdf452KbAdobe PDF910View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback