English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 91287/121427 (75%)
Visitors : 25450212      Online Users : 248
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/33894
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/33894

    Title: 以穩健估計及長期資料分析觀點探討資本資產定價模型
    On the CAPM from the Views of Robustness and Longitudinal Analysis
    Authors: 呂倩如
    Lu Chien-ju
    Contributors: 鄭宗記
    Lu Chien-ju
    Keywords: 長期資料分析
    longitudinal data analysis
    linear mixed-effects model
    robust estimation
    least trimmed squares estimator
    capital asset pricing model
    panel data analysis
    Date: 2002
    Issue Date: 2009-09-17 18:44:56 (UTC+8)
    Abstract: 資本資產定價模型 (CAPM) 由Sharp (1964)、Lintner (1965)及Black (1972)發展出後,近年來已被廣泛的應用於衡量證券之預期報酬率與風險間之關係。一般而言,衡量結果之估計有兩個階段,首先由時間序列分析估計出貝它(beta)係數,然後再檢定廠商或投資組合之平均報酬率與貝它係數之關係。
    Fama與MacBeth (1973)利用最小平方法估計貝它係數,再將由橫斷面迴歸方法所得出之斜率係數加以平均後,以統計t-test檢定之。然而以最小平方法估計係數,其估計值很容易受離群值之影響,因此本研究考慮以穩健估計 (robust estimator)來避免此一問題。另外,本研究亦將長期資料分析 (longitudinal data analysis) 引入CAPM裡,期望能檢定貝它係數是否能確實有效地衡量出系統性風險。
    The Capital Asset Pricing Model (CAPM) of Sharp (1964), Lintner (1965) and Black (1972) has been widely used in measuring the relationship between the expected return on a security and its risk in the recent years. It consists of two stages to estimate the relationship between risk and expected return. The first one is that betas are estimated from time series regressions, and the second is that the relationship between mean returns and betas is tested across firms or portfolios. Fama and MacBeth (1973) first used ordinary least squares (OLS) to estimate beta and took time series averages of the slope coefficients from monthly cross-sectional regressions in such studies. However it is well known that OLS is sensitive to outliers. Therefore, robust estimators are employed to avoid the problems. Furthermore, the longitudinal data analysis is applied to examine whether betas over time and securities are the valid measure of risk in the CAPM. An empirical study is carried out to present the different approaches. We use the data about the Information and Electronic industry in Taiwan stock market during the period from September 1998 to December 2001. For the time series regression analysis, the robust methods lead to more explanatory power than the OLS results. The linear mixed-effect model is used to examine the effects of different streams and companies for the security excess returns in these data.
    Reference: Amihud, Y. B. J., Christensen, and Mendelson, H., 1992, Further evidence on the risk-return relationship, Working paper, New York University.
    Brigham E. F., Gapenski L. C., and Ehrhardt M. C., 1999, Financial Management: Theory and Practice, 9th ed., Orlando: The Dryden Press.
    Chan, L. K. C. and Lakonishok, J., 1992, Robust measurement of beta risk. Journal of Financial and Quantitative Analysis 27, 265-282.
    Chang, E., 1998, The correlation research of the stock prices of the upper middle lower stream of the electronic companies, master article, National Chung Hsing University.
    Chen, N. F., Roll, R., and Ross, S. A., 1986, Economic forces and the stock market, Journal of Business 59, 383-403.
    Cullis, B. R. and McGilchrist, C. A., 1990, A model for the analysis of growth data from designed experiments, Biometrics 42, 909-917.
    Davidian, M. and Giltinan, D. M., 1995, Nonlinear Models for Repeated Measurement Data, London: Chapman & Hall.
    Davies, L., 1992, The asymptotics of Rousseeuw’s minimum volume ellisoid estimator, The Annals of Statistics 20, 1828-1843.
    Diggle, P. J., Liang, K. Y., and Zeger S. L., 1996, Analysis of Longitudinal Data, Oxford: Clarendon Press.
    Draper, N. R. and Smith, H., 1998, Applied Regression Analysis, 3rd ed., New York: John Wiley.
    Fama, E. F., 1965, The behavior of stock prices, Journal of Business 38, 34-105.
    Fama, E. F. and French, K. R., 1992, The cross-section of expected stock returns, The Journal of Finance 47, 427-465.
    Fama, E. F. and French, K. R., 1993, Common risk factors in the returns on stocks and bonds, Journal of Financial Economics 33, 3-56.
    Fama, E. F. and French, K. R., 1995, Size and book-to-market factors in earnings and returns, The Journal of Finance 50, 131-155.
    Fama, E. F. and French, K. R., 1997, Industry costs of equity, Journal of Financial Economics 44, 153-193.
    Fama, E. F., and James M, 1973, Risk, return and equilibrium: Empirical tests, Journal of Political Economy 81, 607-636.
    Harville, D., 1974, Bayesian inference for variance components using only error contrasts, Biometrika 61, 383-385.
    Hsiao, C., 1986, Analysis of Panel Data, Cambridge University Press.
    Huber, P. J., 1981, Robust Statistics, New York: John Wiely and Sons.
    Hubert, M. and Rousseeuw, P. J., 1995, Robust regression with both continuous and binary regressors, Journal of Statistical Planning and Inference 57, 153-163.
    Jagannathan, R. and Wang, Z., 1996, The conditional CAPM and the cross-section of expected returns, Journal of Finance 51, 3-53.
    Kenz, P. J. and Ready, M. J., 1997, On the robustness of size and book-to-market on cross-sectional regressions, Journal of Finance, Vol. LII, No. 4, 1355-1382.
    Kon, S., 1984, Models of stock returns-a comparison, Journal of Finance 39, 147-165.
    Laird, N. M. and Ware, J. H., 1982, Random-effects model for longitudinal data, Biometrics 38, 963-974.
    Lakonishok, J. and Shapiro, A. C., 1986, Systematic risk, total risk and size as determinants of stock market returns, Journal of Banking and Finance 10, 115-132.
    Levy, H., 1997, Risk and return: an empirical analysis, International Economic Review 38(1), 119-149.
    Lin, H., 2000, The correlation reseration of the stock price of the upper middle and lower stream of the electronic companies, master article, Da-Yeh University.
    Lindsey, J. K. 1999, Models for Repeated Measurements, 2nd ed., Oxford: New York.
    Mandelbrot, B. 1963, The variation of certain speculative prices, Journal of Business 36, 394-419.
    Martin, R. D. and Simin, T., March 1999, Robust estimation of beta, Technical Report NO. 350, 1-38.
    Martin, R. D. and Simin, T., May 1999, Estimates of small-stock betas are often very distorted by outliers, Technical Report NO. 351, 1-19.
    Merton, R. C., 1973, An intertemporal capital asset pricing model, Econometrica 41, 867-887.
    Patterson, H. D. and Thompson, R., 1971, Recovery of inter-block information when block sizes are unequal, Biometrika 58, 545-554.
    Pinheiro, J. C. and Bates, D. M. B., 2000, Mixed-Effects Models in S and S-PLUS, New York: Springer.
    Radcliffe, R. C., 1997, Investment: Concepts, Analysis, Strategy, 5th ed., Addison- Wesley.
    Reinganum, M. R., 1981, A new empirical perspective on the CAPM, Journal of Finance and Quantitative Analysis 16, 439-462.
    Roll, R., 1988, R2, Journal of Finance 43, 541-566.
    Ross, S. A., 1976, The arbitrage theory of capital asset pricing, Journal of Economic Theory 13, 341-360.
    Rosseeuw, P. J., 1984, Least median of squares regression, Journal of the American Statistical Association 79, 871-880.
    Rosseeuw, P. J., 1985, Multivariate estimation with high breakdown point, Mathematical Statistics and Applications, Vol. B, W. Grossmann, G. Pflug, I. Vincze and W. Wertz, Eds., Reidel, Dordrecht, 283-297.
    Rousseeuw, P. J. and Leroy, A. M., 1987, Robust Regression and Outlier Detection, New York: Wiley.
    Ruppert, D. and Carroll, R., 1980, Trimmed least squares estimations in the linear model, Journal of the American Statistical Association 75, 828-838.
    Shalit, H. and Yitzhaki, S., 2001, Estimating beta, Working paper, Hebrew University of Jerusalem.
    Verbyla, A. P. and Cullis, B. R., 1990, Modelling in repeated measures experiments,
    Biometrika 75, 129-138.
    Zeger, S. L., Liang, K. Y., and Albert, P. S., 1988, Models for Longitudinal data: a generalized estimation equation approach, Biometrics 44, 1049-1060.
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0089354018
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    35401801.pdf9KbAdobe PDF893View/Open
    35401802.pdf10KbAdobe PDF989View/Open
    35401803.pdf31KbAdobe PDF1041View/Open
    35401804.pdf49KbAdobe PDF4124View/Open
    35401805.pdf94KbAdobe PDF988View/Open
    35401806.pdf160KbAdobe PDF1146View/Open
    35401807.pdf1219KbAdobe PDF1026View/Open
    35401808.pdf12KbAdobe PDF921View/Open
    35401809.pdf17KbAdobe PDF1495View/Open
    35401810.pdf13KbAdobe PDF1166View/Open
    35401811.pdf11KbAdobe PDF957View/Open
    35401812.pdf10KbAdobe PDF1566View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback