English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 89686/119522 (75%)
Visitors : 23946714      Online Users : 146
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/33923
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/33923

    Title: 疾病群聚檢測方法與檢定力比較
    Disease Cluster Detection Methods and Power Comparison
    Authors: 王泰期
    Wang, Tai-Ci
    Contributors: 余清祥
    Wang, Tai-Ci
    Keywords: 空間群聚
    Spatial Cluster
    Count Data
    Disease Detection
    Date: 2005
    Issue Date: 2009-09-17 18:49:10 (UTC+8)
    Abstract: 空間群聚分析應用於流行病學已行之有年,但國內這方面的研究仍較缺乏,尤其在找出哪些地區有較高疾病發生率的群聚偵測。本文針對台灣鄉鎮市資料的特性,提出一套合適的群聚檢測方法,這個方法使用兩階段的電腦模擬,實證上更容易使用;這個方法除了可找出最大顯著群聚外,也能夠偵測出多個群聚的分佈。本文使用電腦模擬比較本文的方法與目前使用較為廣泛的方法(包括Kulldorff(1995)的spatial scan statistic和Tango(2005)的flexible scan statistic),以型一誤差、型二誤差及錯誤率三種標準衡量方法的優劣。最後套用台灣癌症死亡率與健保就診次數資料,探討台灣癌症空間群聚與就診情形的變化。
    Spatial cluster analyses have applied in epidemiology for many years. In this topic there still are few researches in Taiwan, especially in detecting the areas which have higher disease intensity. In this paper, we proposed a new cluster detection method which is aimed at Taiwan counties’ data. This method which uses two-stage computer simulation procedures is useful in practice. This method can find the most likely cluster. Besides, it can find multiple clusters. We use computer simulations to compare our method with others (Kulldorff’s spatial scan statistic& Tango’s flexible scan statistic). Type-I error, Type-II error and error rate are criterions of measurement. At last, we use Taiwan cancer mortality data and all the people health insurance data to discuss Taiwan cancer spatial clusters and the change of diagnoses.
    Reference: Alexander, F.E. and Boyle, P. Introduction. In Methods for Investigating Localized Clustering of Disease, ed. F.E. Alexander and P. Boyle. Lyon, France: International Agency for Research on Cancer. 1996 (1)
    Alexander, F.E. and Boyle, P. Overview of Results. In Methods for Investigating Localized Clustering of Disease, ed. F.E. Alexander and P. Boyle. Lyon, France: International Agency for Research on Cancer. 1996 (2)
    Alexander, F.E. and Boyle, P. Editorial Comments. In Methods for Investigating Localized Clustering of Disease, ed. F.E. Alexander and P. Boyle. Lyon, France: International Agency for Research on Cancer. 1996 (3)
    Andrew B. Lawson “Disease cluster detection: A critique and a Bayesian proposal” , Statistics in Medicine, 25: :897–916 (2006).
    Besag, J. and Newell, J. “The detection of clusters in rare diseases”, Journal of the Royal Statistical Society, Series A, 154, 143-155 (1991)
    Choynowski, M. “Maps based on probabilities”, Journal of the American Statistical Association, 54, 385-388 (1959)
    Cressie, N., “Statistics for spatial data (2nd ed.)”, Wiley-Interscience, New York, 1993
    CUZICK, J., EDWARDS, R.”Spatial clustering for inhomogeneous populations.”, Journal of the Royal Statistical Society Series B, 52:73-104. (1990)
    Gangnon R, Clayton M. “Bayesian detection and modelling of spatial disease clustering”, Biometrics, 56, 922–935 (2000).
    Gangnon R, Clayton M. “Cluster modelling for disease rate mapping”, In Spatial Cluster Modelling, Lawson AB, Denison D (eds), Chapter 8. CRC Press: New York, (2002).
    Gangnon R. “Impact of prior choice on local Bayes factors for cluster detection” , Statistics in Medicine, 25, 883–895 (2006).
    Gardner, M.J. “Review of reported increases of childhood cancer rates in the vicinity of nuclear installations in the UK”, Journal of the Royal Statistical Society, Series A, 152,307-325 (1989).
    GRIMSON, R.C. “Disease clusters, exact distributions of maxima, and p-values.” Statistics in Medicine, 12, 1773-1794. (1993)
    Hills, M. and Alexander, F., “Statistical methods used in assessing the risk of disease near a source of possible environmental pollution: a review”, Journal of the Royal Statistical Society, Series A, 152, 353-363 (1989).
    John Snow, M.D.” On the Mode of Communication of Cholera ” London: John Churchill, New Burlington Street, England, 1855
    Knox, E. “Detect of clusters”, in P. Elliot (ed.), Methodology of Enquiries into Disease Clustering, London School of Hygiene and Tropical Medicine, London.(1988).
    Kulldorff, M. and Nagarwalla, N. “Spatial disease clusters: detection and inference”, Statistics in Medicine, 14, 799-810 (1995).
    Kulldorff, M. “A spatial scan statistic”, Communications in Statistics - Theory and Methods, 26, 1481-1496 (1997).
    Kulldorff, M, Tango T, Park PJ. “Power comparisons for disease clustering tests”, Computational Statistics and Data Analysis, 42,665–684 (2003).
    Lance A. Waller1, Elizabeth G. Hill and Rose Anne Rudd “The geography of power: Statistical performance of tests clusters and clustering in heterogeneous populations”, Statistics in Medicine, 25: 853–865 (2006).
    Luiz Duczmal and David L. Buckeridge ”A work flow spatial scan statistic.” Statistics in Medicine, 25:743–754 (2006).
    MANTEL, N., BAILAR, J.C.”A class of permutational and multinomial tests arising in epidemiological research.” Biometrics, 26, 687-700 (1970)
    Marshal, R. J. “A review of the statistical analysis of spatial patterns of disease”, Journal of the Royal Statistical Society, Series A, 154, 421-441(1991).
    Mary M. Louie and Eric D. Kolaczyk “A multiscale method for disease mapping
    in spatial epidemiology”, Statistics in Medicine, 25: 1287–1306 (2006).
    Md. Monir Hossain and Andrew B. Lawson “Cluster detection diagnostics for small area health data: With reference to evaluation of local likelihood models” , Statistics in Medicine, 25: :771–786 (2006).
    Openshaw, S., Craft, A. W., Charlton, M. G. and Birch, J. M. “Investigation of leukemia clusters by use of a geographical analysis machine”, Lancet, i, 272-273 (1988)
    Openshaw S., Turner A., Turton I., Macgill J. ”Testing space-time and more complex hyperspace geographical analysis tools.” (1999)
    Online at <http://www.ccg.leeds.ac.uk/smart/hyper.html>
    R. Assunc˜ao, M. Costa, A. Tavares and S. Ferreira “Fast detection of arbitrarily shaped disease clusters”, Statistics in Medicine, 25:723–742 (2006).
    ROSS, A., DAVIS, S. “Point pattern analysis of the spatial proximity of residences prior to diagnosis of persons with Hodgkin's disease.” American Journal of Epidemiology, 132, S53-S62. (1990)
    Sankoh, O. A., Heiko Becher, “Disease cluster methods in epidemiology and application to data on childhood mortality in rural Burkina Faso”(2002)
    online at http://www.hyg.uni-heidelberg.de/sfb544/publikationen.html
    Smith, G. H., “Disease cluster detection methods: the impact of choice of shape on the power of statistical tests”, (2002)
    online at http://www.cobblestoneconcepts.com/ucgis2summer/smith/SMITH.HTM
    Stone, R. A. “Investigations of excess environmental risks around putative sources: statistical problems and a proposed test”, Statistics in Medicine, 7, 649-660 (1988).
    Stone, R.A and. Bithell, J.F. (1989) On statistical methods for analyzing the geographical distribution of cancer cases near nuclear installations. Journal of Epidemiology and Community Health, 43, 1, 79-85
    Tango, T. “A test for spatial disease clustering adjusted for multiple testing”, Statistics in Medicine, 19, 191-204 (2000)
    Tango T, Takahashi K. “A flexibly shaped spatial scan statistic for detecting clusters”, International Journal of Health Geographics, 4, 11 (2005).
    Turnbull, B. W., Iwano, E. J., Burnett, W. S., Howe, H. L. and Clark, L. C. “ Monitoring for clusters of disease: application to leukemia incidence in upstate New York”, American Journal of Epidemiology, 132, S136-143 (1990).
    Whittemore, A. S., Friend, N., Brown, B. W. and Holly, E. A., “A test to detect clusters of disease”, Biometrika, 74 , 631-635.(1987)
    余清祥與陳楓玲, “A Simulation Study of Detecting Clusters: An Application to Taiwan Cancer Mortality”,台灣智慧科技與應用統計學術研討會(2003)
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0933540041
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    54004101.pdf39KbAdobe PDF696View/Open
    54004102.pdf91KbAdobe PDF779View/Open
    54004103.pdf59KbAdobe PDF771View/Open
    54004104.pdf67KbAdobe PDF905View/Open
    54004105.pdf85KbAdobe PDF773View/Open
    54004106.pdf258KbAdobe PDF1185View/Open
    54004107.pdf271KbAdobe PDF955View/Open
    54004108.pdf268KbAdobe PDF1384View/Open
    54004109.pdf107KbAdobe PDF941View/Open
    54004110.pdf322KbAdobe PDF986View/Open
    54004111.pdf126KbAdobe PDF819View/Open
    54004112.pdf48KbAdobe PDF705View/Open
    54004113.pdf67KbAdobe PDF770View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback