English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 93779/124226 (75%)
Visitors : 28862914      Online Users : 402
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/34162

    Title: 薪資所得與通貨膨脹不確定性於確定提撥退休金計畫
    Hedging Labor Income Inflation Uncertainties through Capital Market in Defined Contribution Pension Schemes
    Authors: 黃雅文
    Hwang Ya-wen
    Contributors: 張士傑
    Hwang Ya-wen
    Keywords: 確定提撥
    defined contribution
    salary uncertainty
    stochastic control
    dynamic programming
    Date: 2004
    Issue Date: 2009-09-18
    Abstract: 本文於確定提撥退休金制度下,探討基金經理人如何決定最適資產策略規避薪資所得及通貨膨脹之不確定風險,求得期末財富效用期望值極大化。本研究首先擴展Battocchio與Menoncin (2004)所建構之資產模型,我們不僅探討來自市場之風險,同時考量薪資所得、通貨膨脹與費用率之不確定性,研究其對最適資產配置行為的影響,建構隨機控制模型,以動態規劃方法求解Hamiltonian方程式,研究結果顯示,我們可利用五項共同基金分離定理來描述投資人之最適投資決策:短期市場基金、狀態變數避險基金、薪資所得避險基金、通貨膨脹避險基金與現金部位。數值結果顯示,股票持有部位中通貨膨脹避險基金佔有最大的成份,債券持有部位中通貨膨脹避險基金與狀態變數避險基金佔有最大的成份。
    In this study, we investigate the portfolio selection problem in order to hedge the labor income and inflation uncertainties for defined contribution (DC) pension schemes. First, we extend the previous work of Battocchio and Menoncin (2004) that allowed the state variables (i.e., the risks from the financial market) and a set of stochastic processes to describe the inflation, labor income and expense uncertainties. A five-fund separation theorem is derived to characterize the optimal investment strategy for DC pension plans to hedge the labor income and the inflation risks. Second, by solving the Hamiltonian equation in the three-asset framework, we show that the optimal portfolio consists of five components: the myopic market portfolio, the hedge portfolio for the state variables, the hedge portfolio for the inflation risk, the hedge portfolio for the labor income uncertainty and the riskless asset. Then we explicitly solve the optimal portfolio problem. Finally, the numerical results indicate that the inflation hedge portfolio comprises the overwhelming proportion of stock holdings in the optimal portfolios. In addition, the inflation hedge portfolio and the state variable hedge portfolio constitute the overwhelming proportions of bond holdings.
    Keywords: defined contribution; salary uncertainty; inflation; stochastic control; dynamic programming.
    Reference: References
    [1] Battocchio, P., Menoncin, F., 2004. Optimal portfolio strategies with sto-
    chastic wage income and in‡ation: the case of a de…ned contribution pen-
    sion plan. Working Paper CeRP, No. 19-02. Torino, Italy.
    [2] Battocchio, P., Menoncin, F., 2004. Optimal Pension management in a
    stochastic framework. Insurance: Mathematics and Economics 34, 79-95.
    [3] Black, D., Cairns, A. J. G., Dowd, K., 2000. Optimal dynamic asset allo-
    cation for de…ned-contribution plans. The Pension Institute, London, Dis-
    cussion Paper PI 2003.
    [4] Boulier, J. F., Huang, S. J., Taillard, G., 2001. Optimal management under
    stochastic interest. Insurance: Mathematics and Economics 28, 173-189.
    [5] Boyle, P. and Yang, H., 1997. Asset allocation with time variation in ex-
    pected returns, Insurance: Mathematics and Economics, 21, 201-218.
    [6] Brennan, M. J., Schwartz, E. S., Lagnado R., 1997. Strategic asset alloca-
    tion, Journal of Economics, Dynamics and Control, 21, 1377-1403.
    [7] Brennan, M. J., Schwartz E. S., 1982. An equilibrium model of bond pric-
    ing and a test of market e¢ ciency, Journal of Financial and Quantitative
    Analysis, 17, 301-329.
    [8] Brennan, M. J. and Schwartz, E. S. Schwartz, 1998. The use of treasury
    bill futures in strategic asset allocation programs. In Worldwide Asset and
    Liability Modeling. (J.M.Mulvey andW.T. Ziemba, Eds.) Cambridge, Eng-
    land: Cambridge University Press, 205-230.
    [9] Brimson, G. P., Hood, L. R., & Beelower, G. L. (1986). Determinants of
    portfolio performance. Financial Analysts Journal, 42, 39-44.
    [10] Brimson, G. P., et.al., (1990). Determinants of portfolio performance II:
    An update. Financial Analysts Journal, 47,40-48.
    [11] Cairns, A. J. G., 2000. Some notes on the dynamics and optimal control
    of stochastic pension fund models in continuous time, ASTIN Bulletin, 30,
    [12] Campbell, J. Y., Cocco, J., Gomes, F., Maenhout P. 2001. Investing re-
    tirement wealth: a life cycle model, in Risk Aspects of Investment-Based
    Social Security Reform, Edited by Campbell, J. Y., Feldstein, M., editors,
    Chicago University Press, Chicago.
    [13] Campbell, J. Y., Viceira L. M., 1999. Consumption and portfolio decisions
    when expected returns are time varying, Quarterly Journal of Economics,
    114, 433-495.
    [14] Campbell, J. Y., Viceira L. M., 2001. Who should buy long-term bonds,
    American Economic Review, 91, 99-127.
    [15] Campbell, J. Y., Viceira L. M., 2002. Strategic asset allocation - portfolio
    choice for long-term investors, Oxford University Press.
    [16] Chang, S. C., 1999. Optimal pension funding through dynamic simulations:
    the case of Taiwan public employees retirement system, Insurance: Math-
    ematics and Economics, 24, 187-199.
    [17] Chang, S. C., 2000. Realistic pension funding: a stochastic approach, Jour-
    nal of Actuarial Practice, 8, 5-42.
    [18] Chang, S. C., Tsai, C. H., Tien, C. J., Tu, C. Y. , 2002. Dynamic funding
    and investment strategy for de…ned bene…t pension schemes: model incor-
    porating asset-liability matching criterion, Journal of Actuarial Practice,
    10, 131-155.
    [19] Chang, S. C., Tzeng, L. Y., Miao, C. Y., 2003. Pension funding incorporat-
    ing downside risks, Insurance: Mathematics and Economics, 32, 217-228.
    [20] Cox, J. C., Huang, C. F., 1991. A variational problem arising in …nancial
    economics. Journal of Mathematical Economics 20, 465-487.
    [21] Deelstra, G., Grasselli, M., Koehl, P. F., 2003. Optimal investment strate-
    gies in the presence of a minimum guarantee. Insurance: Mathematics and
    Economics 33, 189-207.
    [22] Du¢ e, D., 1996. Dynamic Asset Pricing Theory. Princeton University
    Press, Princeton.
    [23] Fisher I., 1930. The Theory of Interest. New York: A. M. Kelly.
    [24] Haberman, S., Sung, J. H., 1994. Dynamic approaches to pension funding,
    Insurance: Mathematics and Economics, 15, 151-162.
    [25] Haberman, S., Vigna, E., 2001. Optimal investment strategy for de…ned
    contribution pension schemes. Insurance: Mathematics and Economics 28,
    [26] Heaton, J., Lucas, D. 1997. Market frictions, savings behavior and portfolio
    choice, Macroeconomic Dynamics, 1, 76-101.
    [27] Huang, H., Imrohoroglu, S., Sargent, T. J. 1997. Two computations to fund
    social security, Macroeconomic Dynamics,1(1), 7-44.
    [28] Imrohoroglu, A., Imrohoroglu, S., Joines, D. 1995. A life cycle analysis of
    social security, Economic Theory, 6, 83-114.
    [29] Imrohoroglu, A., Imrohoroglu, S., Joines, D. 1999a. A dynamic stochastic
    general equilibrium analysis of social security, in Kehoe, T., Prescott, E.,
    eds., The Discipline of Applied General Equilibrium, Springer-Verlag.
    [30] Josa-Fombellida, R., Rinc-Zapatero, J. P., 2001. Minimization of risks in
    pension funding by means of contributions and portfolio selection, Insur-
    ance: Mathematics and Economics, 29, 35-45.
    [31] Karatzas, I., Lehoczky, J. P., Sethi, S. P., Shreve, S. E., 1986. Explicit
    solutions of a 30 general consumption investment problem, Mathematics of
    Operations Research, 11, 261-294.
    [32] Koo, H. K. 1998. Consumption and portfolio selection with labor income:
    a continuous time approach, Mathematical Finance, 8, 49-65.
    [33] Karatzas, I., Shreve, S. 1991. Brownian Motion and Stochastic Calculus.
    Springer, New York.
    [34] Kim, T., Omberg, E., 1996. Dynamic nonmyopic portfolio behavior, Review
    of Financial Studies 9, 141-161.
    [35] Lioui, A., Poncet, P., 2001. On optimal portfolio choice under stochastic
    interest rates. Journal of Economic Dynamic and Control 25, 1841-1865.
    [36] Madsen, J. B. 2002. The share market boom and the recent disin‡ation
    in the OECD countries: the tax-e¤ects, the in‡ation-illusion, and the risk-
    aversion hypotheses reconsidered. Quarterly Review of Economics and Fi-
    nance, 42, 115-141.
    [37] Markowitz, H. M., 1952. Portfolio selection. Journal of Finance 7(1), 77-91.
    [38] Markus, R., William, T., Z., 2004. Intertemporal surplus management.
    Journal of Economic Dynamics and Control 28, 975-990.
    [39] Menoncin, F., 2002. Optimal portfolio and background risk: an exact and
    an approximated solution, Insurance: Mathematics and Economics, 31,
    [40] Merton, R. C. 1969. Lifetime portfolio selection under uncertainty: The
    continuous time case. Review of Economics and Statistics 51, 247-257.
    [41] Merton, R. C. 1971. Optimum consumption and portfolio rules in a con-
    tinuous time model. Journal of Economic Theory 3, 373-413.
    [42] Merton, R. C. 1990. Continuous-time Finance. Blackwell, Cambridge, MA.
    [43] Modigliani, F., John, R. A. 1979. In‡ation, rational valuation and the mar-
    ket. Financial Analysts Journal, 24-44.
    [44] O’Brien, T., 1986. A stochastic-dynamic approach to pension funding, In-
    surance: Mathematics and Economics, 5, 141-146.
    [45] O’Brien, T., 1987. A two-parameter family of pension contribution func-
    tions and stochastic optimization, Insurance: Mathematics and Economics,
    6, 129-134.
    [46] Ritter, J. R., Warr, R. S. 2002. The decline of in‡ation and the bull market
    of 1982 to 1999. Journal of Financial and Quantitative Economics, 37, 29-
    [47] Runggaldier, W. J., 1998. Concept and methods for discrete and continuous
    time control under uncertainty, Insurance: Mathematics and Economics,
    22, 25-39.
    [48] Rutkowski. M., 1999. Self-…nancing trading strategies for sliding, rolling-
    horizon, and consol bonds. Mathematical Finance 9, no. 4, 361-365.
    [49] Samuelson, P., 1969. Lifetime portfolio selection by dynamic stochastic
    programming, Review of Economics and Statistics, 51, 239-246.
    [50] Schäl, M., 1998. On piecewise deterministic Markov control processes: con-
    trol of jumps and of risk processes in insurance, Insurance: Mathematics
    and Economics, 22, 75-91.
    [51] Sharpe, W. F., 1991. Capital asset prices with and without negative hold-
    ings, Journal of Finance, 64, 489-509.
    [52] Sorensen, C., 1999. Dynamic asset allocation and …xed income manage-
    ment, Journal of Financial and Quantitative Analysis, 34, 513-531.
    [53] Vasicek, O. E. 1997. An equilibrium characterization of the term structure.
    Journal of Financial Economics 5, 177-188.
    [54] Viceira L. M., 2001. Optimal portfolio choice for long-horizon investors
    with non-tradable labor income, Journal of Finance, 56, 433-470.
    [55] Wachter, J. A., 2002. Portfolio and consumption decisions under mean-
    reverting returns: an exact solution for complete markets, Journal of Fi-
    nancial and Quantitative Analysis, 37, 63-91.
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0923580071
    Data Type: thesis
    Appears in Collections:[風險管理與保險學系 ] 學位論文

    Files in This Item:

    File Description SizeFormat
    58007101.pdf47KbAdobe PDF734View/Open
    58007102.pdf65KbAdobe PDF920View/Open
    58007103.pdf16KbAdobe PDF713View/Open
    58007104.pdf13KbAdobe PDF683View/Open
    58007105.pdf62KbAdobe PDF898View/Open
    58007106.pdf90KbAdobe PDF1049View/Open
    58007107.pdf94KbAdobe PDF820View/Open
    58007108.pdf92KbAdobe PDF861View/Open
    58007109.pdf70KbAdobe PDF1284View/Open
    58007110.pdf19KbAdobe PDF711View/Open
    58007111.pdf35KbAdobe PDF676View/Open
    58007112.pdf51KbAdobe PDF704View/Open
    58007113.pdf30KbAdobe PDF984View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback