English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 94559/125088 (76%)
Visitors : 29798741      Online Users : 542
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/36658
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/36658

    Title: Robust Diagnostics for the Logistic Regression Model With Incomplete Data
    Authors: 范少華
    Contributors: 鄭宗記
    Keywords: EM algorithm
    Incomplete data
    generalized linear model
    high breakdown ppint
    robust methods
    Date: 2002
    Issue Date: 2009-09-18 19:08:47 (UTC+8)
    Abstract: Atkinson 及 Riani 應用前進搜尋演算法來處理百牡利資料中所包含的多重離群值(2001)。在這篇論文中,我們沿用相同的想法來處理在不完整資料下一般線性模型中的多重離群值。這個演算法藉由先填補資料中遺漏的部分,再利用前進搜尋演算法來確認資料中的離群值。我們所提出的方法可以解決處理多重離群值時常會遇到的遮蓋效應。我們應用了一些真實資料來說明這個演算法並得到令人滿意結果。
    Atkinson and Riani (2001) apply the forward search algorithm to deal with the problem of the detection of multiple outliers in binomial data.
    In this thesis, we extend the similar idea to identify multiple outliers for the generalized linear models when part of data are missing. The algorithm starts with imputation method to
    fill-in the missing observations in the data, and then use the forward search algorithm to confirm outliers. The proposed method can overcome the masking effect, which commonly occurs when multiple outliers exit in the data. Real data are used to illustrate the procedure, and satisfactory results are obtained.
    Reference: Atkinson, A. C. (1994). ”Fast very robust methods for the detection o smultiple outliers”,
    Hournal of the American Association 89, 1329-1339.
    Atkinson, A. C. and Riani, M. (2001). ”Regression diagnostics for binomial data from the
    forward search”, The Statistician, 50, 63-78.
    Atkinson, A. C. and Riani, M. (2000). Robust Diagnostic Regression Analysis, New York:
    Beaton, A. E. (1964). ”The use of special matrix operations in statitical calculus”, Educational
    Testing Service Research Bulletin, RB, 64-52.
    Belsey, D. A., Kuh, E., and Welsch, R.E. (1980). Regression Diagnostics: Identifying In?uential
    Data and Sources of Collinearity, New York: Wiley.
    Bliss, C. I. (1935). ”The calculation of the dosage-mortality curve”, Annals of Applied Biology
    22, 134-167.
    Christmann, A. (1994). ”Least median of weight squared in logistic regression with large
    strata”,Biometrika, 81, 413-417.
    Collett, D., (1991). Modelling Binary Data, London: Chapman & Hall.
    Cook, R. D., (1977). ”Detection of in?uential observations in linear regression”, Technometrics,
    19, 15-18.
    Cook, R. D., and Weisberg, S., (1982). Residuals and In?uence in Regression, London:
    Chapman & Hall.
    Cook, R. D., and Weisberg, S., (1999). Applied Regression Including Computing and Graphics,
    New York: John Wiley & Sons.
    Croux, C., Flandre, C. and Haesbroeck,G. (2002). ”The breakdown behavior of the maximum
    likelihood estimator in the logistic regression”, Statistics & Probability Letters 60, 377-
    Dempster, A. P. (1969). Elements of Continuous Multivariate Analysis. Addison-Wesley,
    Reading, MA.
    Dempster, A. P., Laird, N. M. and Rubin, D. B. (1997). ”Maximum likelihood from incomplete
    data via the EM algorithm (with discussion)”, J. Roy. Statist. Soc. 39, 1-38.
    Donoho, D. L., and Huber, P. J. (1983). The Notion of Breakdown Point. In A Festschrift
    for Erich L. Lehmann, Ed. P. J. Bickel, K. A. Docksum and J. L. Hodges, Jr., 157-84.
    Belmont CA: Wadsworth.
    Ibrahim, G. J. (1990). ”Incomplete data in generalized linear models”, American Statistical
    Association, 85, 765 - 769.
    Ibrahim, J. G. and Chen, M. H., Lipsitz, S. R., (1999). ”Monte Carlo EM for missing
    covariates in parametric regression models”, Biometrics, 55, 591 - 596.
    Little J. A. and Rubin D. B. (1987). Ststistical Analysis with Missing Data, New York: John
    Wiley & Sons.
    Little, J. A. and Schluchter, M. D. (1985). ”Maximum likelihood estimation for mixed
    continuous and categorical data with missing values”, Biometrika, 72, 497-512.
    Olkin, I., and Tate, R. F. (1961). ”Multivariate correlation models with mixed discrete and
    continuous variables”, Ann. Math. Statist., 32, 448-465.
    Pregibon, D. (1981). ”Logistic Regression Diagnostics”, The Annals of Statistic, 9 705-724.
    Rousseeuw, P. J. (1984). ”Least median of squares regression”, J. Am. Stat. Assoc., 79,
    Rubin, D. B. (1976). ”Inference and missing data”, Biometrika 63, 581-592.
    Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data, London: Chapman & Hall.
    Wei, G. C. and Tanner, M. A. (1990). ”A Monte Carlo implementation of the EM algorithm
    and the poor man’s data augmentation algorithm”. Journal of the American Statistical
    Association 85, 699-704.
    Zelterman, D. (1999). Models for Discrete Data, Oxford: Oxford University Press.
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0090354008
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback