English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88987/118697 (75%)
Visitors : 23579501      Online Users : 107
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/36921
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/36921


    Title: 貝氏分量迴歸的探討與應用-以台灣股價報酬率資料為例
    Authors: 陳繼舜
    Contributors: 翁久幸
    陳繼舜
    Keywords: 分量迴歸
    貝氏分量迴歸
    馬可夫鍊蒙地卡羅方法
    股價報酬率
    Date: 2006
    Issue Date: 2009-09-18 20:09:42 (UTC+8)
    Abstract: 分量迴歸在近幾年來的應用相當廣泛,但透過貝氏方法估計分量迴歸參數,是由Yu & Moyeed(2001)所提出,拜電腦運算發達之賜而生的新估計方法,因此在實證應用上的研究,貝氏分量迴歸仍在起步的狀態。並且應用馬可夫鍊蒙地卡羅方法的貝氏分量迴歸,在後驗分配的收斂上並沒有類似的探討文獻。因此本研究嘗試以馬可夫鍊蒙地卡羅方法的應用觀點出發,研究運用貝氏方法的分量迴歸估計是否達到馬可夫鍊所重視的收斂至穩態分配,也就是利用模擬資料,探討使用馬可夫鍊蒙地卡羅方法的貝氏分量迴歸在何種情況下,具有較好的收斂情形,以及選擇適當的提議分配。接著以台灣上市公司為例,依電子、紡織以及塑膠產業為別,利用貝氏分量迴歸,觀察民國86~90年,以及91~95年兩區間,股價報酬率在各分量下與財務比率的關連性,並依產業分別進行探討。

    本論文研究結果指出,貝氏分量迴歸在使用時仍須注意馬可夫鍊的收斂情形,將馬可夫鍊的接受頻率定在約20%~30%為佳,且估計結果與Koenker & Bassett(1978)所提出的無母數方法相當一致。在實證資料的分析上,以電子、紡織以及塑膠產業各別的配適結果來看,都依產業別的不同而具有合理的解釋,但貝氏分量迴歸容易因自變數值域的問題,造成馬可夫鍊接受頻率不理想,以及收斂速度過慢的情形,因此在應用貝氏分量迴歸時,自變數值域的影響需要納入考慮,並仍須選擇適當的提議分配、馬可夫鍊重複次數,所得到的結果才會較佳。
    Reference: 徐美珍(2003),企業財務危機之預測,政治大學統計研究所碩士論文
    鄭瑞美(2001)股票報酬與財務比率關係之研究--總體經濟因素與產業別之影響,政治大學會計研究所碩士論文
    Bassett, G. & Chen H. L.(2001)”Return-Based Attribution Using Regression Quantiles”, Empirical Economics, Vol. 26, 293-305
    Buchinsky, M.(1995)”Quantile regression, Box-Cox transformation model, and the U.S. wage structure, 1963-1987”, Journal of Econometrics, Volume 65, 109-154
    Bhandari, L. C.(1988)”Debt/Equity Ratio and Expected Common Stock Returns: Empirical Evidence”, Journal of Finance, Vol. 43, 507-528
    Diaconis, P. & Sturmfels, B.(1998)”Algebraic algorithms for sampling from conditional distributions”, Ann. Statist., Vol 26, 363-397
    Eide, E. & Showalter, M. H.(1998)” The Effect of School Quality on Student Performance: A Quantile Regression Approach”, Economics Letters, Vol. 58, 345-350
    Gelfand, A. E., Hills, S. E., Racine-Poon, A. & Smith, A. F. M.(1990)”Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling”, J. Am. Statist. Ass., Vol. 85, No. 412, 972-985
    Gelman A.(1995)”Inference and monitoring convergence.” Markov Chain Monte Carlo in Practice, London: Chapman & Hall, 131-143
    Gelman, A., Roberts, G.. O. & Gilks, W. R.(1996)”Efficient Metropolis jumping rules”, Bayesian Statistics, Vol. 5, 599-607
    Gelman, A. & Rubin, D. B.(1992)”Inference from iterative simulation using multiple sequences” Statist. Sci., Vol. 7, 457-472
    Geyer, C. J. & Thompson, E. A.(1995) ” Annealing Markov Chain Monte Carlo with Applications to Ancestral Inference”, J. Am. Statist. Ass., Vol. 90, No. 431, 909-920
    Hastings, W. K.(1970)” Monte Carlo sampling methods using Markov chains and their applications”, Biometrika, Vol. 57(1), 97-109
    Hendricks, W. & Koenker, R.(1992)” Hierarchical Spline Models for Conditional Quantiles and the Demand for Electricity”, J. Am. Statist. Ass., Vol. 87, No. 417,
    Holthausen, R. W. & Lacker, D. F.(1992)”The Prediction of Stock Returns Using Financial Statement Information”, Journal of Accounting and Economics 15, 373-411
    Hull, J. & White, A.(1998)” Value at risk when daily changes in market variables are not normally distributed”, J. Deriv., Vol. 5, No. 3, 9-19
    Hobert, J. P. & Jones, G. L.(2001)”Honest Exploration of Intractable Probability Distributions via Markov Chain Monte Carlo”, Statist. Sci., Vol. 16, 312-334
    Koenker, R. & Bassett Jr., G.(1978)”Regression Quantiles”, Econometrica, Vol. 46, No.1, 33-50
    Koenker & Xiao(2006)”Quantile Autoregression”, J. Am. Statist. Ass., Vol. 101, No. 475, 980-1002
    Martikainen, T.(1993)”Stock returns and classification pattern of firm-specific financial variables: empirical evidence with finnish data”, Journal of Business Finance & Accounting, vol. 20, No. 4, 537-557
    McCulloch, C. E.(1997)” Maximum Likelihood Algorithms for Generalized Linear Mixed Models”, J. Am. Statist. Ass., Vol. 92, 162-170
    Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E.(1953)”Equation of state calculations by fast computing machines”, J. Chem. Phys. 21, 1087-1092
    Meyn & Tweedie(1993)Markov Chains and Stochastic Stability, London: Springer-Verlag
    Muller, P.(1993)”A generic approach to posterior integration and Gibbs sampling”, Tech. Rep., ISDS, Duke University
    Ou, J. A. & Penman S. H.(1989)”Financial Statement Analysis and the Prediction of Stock Return”, Journal of Accounting and Economics 11, 295-329
    Pandey, G. R. & Nguyen, V. T. V.(1999)” A comparative study of regression based methods in regional flood frequency analysis”, Journal of Hydrology, Vol. 225,92-101
    Raftery, A. E. & Lewis, S. M.(1995)” Implementing MCMC” Markov Chain Monte Carlo in Practice, London: Chapman & Hall, 115-130
    Spiegelhalter, Thomas & Best(1999)” WinBUGS-A Bayesian modelling framework: Concepts, structure, and extensibility”, Statistics and Computing, Vol. 10, 325-337
    Taylor(1999)”A quantile regression approach to estimating the distribution of multiperiod returns”, J. Deriv., Vol. 24, 64-78
    Tierney, L.(1994)” Markov Chains for Exploring Posterior Distributions”, Ann. Statist., Vol. 22, No. 4, 1701-1762
    Yu, K. & Moyeed, R. A.(2001)”Bayesian Quantile Regression”, Statistics and Probability Letters, Vol. 54, Issue 4, 437-447
    Yu, K. & Stander, J.(2007)”Bayesian Analysis of a Tobit Quantile Regression Model ”
    Yu, K., Lu, Z. & Stander, J.(2003)” Quantile Regression: Applications and Current Research Areas”, J. Roy. Statist. Soc. D, Vol. 55, 3-23
    Description: 碩士
    國立政治大學
    統計研究所
    94354015
    95
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0094354015
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    401501.pdf46KbAdobe PDF725View/Open
    401502.pdf74KbAdobe PDF711View/Open
    401503.pdf71KbAdobe PDF817View/Open
    401504.pdf78KbAdobe PDF765View/Open
    401505.pdf317KbAdobe PDF599View/Open
    401506.pdf307KbAdobe PDF668View/Open
    401507.pdf334KbAdobe PDF828View/Open
    401508.pdf591KbAdobe PDF692View/Open
    401509.pdf197KbAdobe PDF596View/Open
    401510.pdf74KbAdobe PDF656View/Open
    401511.pdf169KbAdobe PDF686View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback