English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 93244/123616 (75%)
Visitors : 27834993      Online Users : 532
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/36928
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/36928

    Title: APC模型估計方法的模擬與實證研究
    Simulation and empirical comparisons of estimation methods for the APC model
    Authors: 歐長潤
    Ou, Chang Jun
    Contributors: 余清祥
    Yue, Jack C.
    Ou, Chang Jun
    Keywords: APC模型
    Age–Period–Cohort Model
    Generalized Linear Models
    Intrinsic Estimator
    Mortality Rates Models
    Date: 2008
    Issue Date: 2009-09-18 20:10:50 (UTC+8)
    Abstract: 20世紀以來,因為衛生醫療等因素的進步,各年齡死亡率均大幅下降,使得平均壽命大幅延長。壽命延長的效果近年逐漸顯現,其中的人口老化及其相關議題較受重視,因為人口老化已徹底改變國人的生活規劃,死亡率是否會繼續下降遂成為熱門的研究課題。描述死亡率變化的模型很多,近代發展的Age–Period–Cohort模型(簡稱APC模型),同時考慮年齡、年代與世代三個解釋變數,是近年廣受青睞的模型之一。這個模型將死亡率分成年齡、年代與世代三個效應,常用於流行病學領域,探討疾病、死亡率是否與年齡、年代、世代三者有關,但一般僅作為資料的大致描述,本研究將評估APC模型分析死亡率的可能性。
    電腦模擬部份比較各估計方法,衡量何者有較小的年齡別死亡率及APC參數的估計誤差;實證分析則考慮交叉分析,尋找用於死亡率預測的最佳估計方法。另外,也將以蒙地卡羅檢驗APC的模型假設,以確定這個模型的可行性。初步研究發現,以台灣死亡資料做為實證,本研究考量的估計方法在估計年齡別死亡率大致相當,只是在年齡–年代–世代這三者有不同的詮釋,且模型假設並非很符合。交叉分析上,Lee–Cater模型及其延展模型相對於APC模型有較小的預測誤差,整體顯示Lee–Cater 模型較佳。
    Since the beginning of the 20th century, the human beings have been experiencing longer life expectancy and lower mortality rates, which can attributed to constant improvements of factors such as medical technology, economics, and environment. The prolonging life expectancy has dramatically changed the life planning and life style after the retirement. The change would be even more severe if the mortality rates have larger reduction, and thus the study of mortality become popular in recent years. Many methods were proposed to describe the change of mortality rates. Among all methods, the Age-Period-Cohort model (APC) is a popular method used in epidemiology to discuss the relation between diseases, mortality rate, age, period and cohort.
    Non-identification (i.e. collinearity) is a serious problem for APC model, and many methods used in the procedure included estimation of parameter. In the first part of this paper, we use simulation compare and evaluate popular estimation methods of APC model, such as Intrinsic Estimator (IE), constrained of age, period and cohort in the Generalized Linear Model (c–glim), sequential method, and Auto-regression (AR) Model. The simulation methods considered include Monte-Carlo and cross validation. In addition, the morality data in Taiwan (Data sources: Ministry of Interior), are used to demonstrate the validity and model assumption of these methods. In the second part of this paper, we also apply similar research method to the Lee-Carter model and compare it to the APC model. We found Lee–Carter model have smaller prediction errors than APC models in the cross–validation.
    Reference: 中文部分
    Bell W R. (1997) Comparing and assessing time series methods for forecasting age–specific fertility and mortality rates. Journal of Official Statistics, 13(3): 279–303.
    Cairns, A. J. G., Blake, D., and Dowd, K. (2009) A quantitative comparison of stochastic mortality models using data from England & Wales and the United States, North American Actuarial Journal. 13(1): 1–35.
    Carstensen, B and Keiding, N. (2004) Age–period–cohort models: Statistical inference in the lexis diagram. Lecture notes, Department of Biostatistics, University of Copenhagen, http://www.biostat.ku.dk/~bxc/APC/notes.pdf
    Carstensen, B and Keiding, N. (2005) Demography and epidemiology: Age–period–cohort models in the computer age, Department of Biostatistics, University of Copenhagen, http://www.pubhealth.ku.dk/bs/publikationer/rr-06-1.pdf.
    Carter, L.R., and Lee, R.D. (1992) Modeling and forecasting US sex differentials in Mortality. International Journal of Forecasting, 8:393–411.
    Christensen, R. (2002) Plane Answers to Complex Questions: The Theory of Linear Models, third edition, Springer–Verlag, New York.
    Clayton, D. and Schifflers, E. (1987) Models for temporal variation in cancer rates I: Age–period and age–cohort models. Statistics in Medicine, 6:449–467.
    Clayton, D. and Schifflers, E. (1987) Models for temporal variation in cancer rates II: Age–period–cohort models. Statistics in Medicine, 6:469–481.
    Frost, W.H.(1939) The selection of mortality from tuberculosis in successive decades, American Journal of Hygiene (Section Age), 30:91–96.
    Fu,W.J. (2000) Ridge Estimator in Singular Design with Application to Age–Period–Cohort Analysis of Disease Rates. Communications in Statistics-Theory and Method, 29:263–278.
    Fu, W.J. Hall, P. and Rohan, T. (2004) Age–period–cohort analysis: structure of estimators, estimability, sensitivity and asymptotics, Technical report, Department of Epidemiology, Michigan State University.
    Fu, W.J. and Hall, P. (2006) Asymptotic Properties of Estimators in Age-Period-Cohort Analysis. Statistics and Probability Letters, 76:1925–1929.
    Fu,W.J. (2007). A Smoothing cohort model in Age–Period–Cohort Analysis with Applications to Homicide Arrest Rates and Lung Cancer Mortality Rates, http://www.msu.edu/~fuw/apc/apcsmthFinal.pdf
    Gompertz, B. (1825) On the nature of the function expressive of the law of human mortality and on a mew mode of determining life contingentcies. Philosophical Transactions of the Royal Society of London, 115:513–585.
    Hastie, T. and Tibshirani, R. (1990) Generalized Additive Models, Chapman and Hall, New York.
    Heligman, L. M. A. and Pollard, J. H. (1980) The age pattern of mortality. Journal of the Institute of Actuaries, 107(1): 49–82.
    Holford TR. (1983) The estimation of age, period and cohort effects for vital rates. Biometrics, 39:311–324.
    Holford TR. (2006) Approaches to fitting age–period–cohort models with unequal intervals. Statistics in Medicine, 25:977–993.
    Kupper, L.L., Janis, J.M., Karmous, A. and Greenberg, B.G. (1985) Statistical age- period-cohort analysis: a review and critique. Journal of Chronic. Diseases, 38: 811–830.
    Lee, W.C. and Lin, R.C. (1996) Autoregressive age period cohort models. Statistics in Medicine, 15:273–281.
    Lee, R. D. and Carter L. R. (1992) Modeling and forecasting U.S. mortality. Journal of the American Statistical Association, 87:659–675.
    O’Bren, R.M. (2000) Age Period Cohort Characteristic Models. Social Science Research, 29, 123–139.
    Osmond, C. and Gardner, M.J. (1982) Age, period and cohort models applied to cancer mortality rates. Statistics in Medicine, 1:245–259.
    Renshaw, A. E., and Haberman, S. (2006) A cohort–based extension to the Lee-Carter model for mortality reduction factors. Insurance: Mathematics and Economics, 38: 556–570.
    Robertson, C. Gandini, S. and Boyle, P. (1999) Age–Period–Cohort Models: A Comparative Study of Available Methodologies. Journal of Clinical Epidemiology, 52(6): 569–583.
    Robertson , C. and Boyle, P. (1999) Age–peiod–cohort models of chronic disease rates I: modeling approaches. Statistics in Medicine, 17:1305–1323.
    Robertson , C. and Boyle, P. (1999) Age–peiod–cohort models of chronic disease rates II: graphical approaches, Statistics in Medicine. 17:1325–1340.
    Ryder, N. B. (1965) The cohort as a concept in the study of social change. American Sociological Review, 30:843–861.
    Smith, H. (2008) Advances in Age–Period–Cohort Analysis, Sociological Methods and Research 36: 287–296.
    Tarone RE, Chu KC. (1992) Implications of birth cohort patterns in interpreting trends in breast cancer rates. Journal of National Cancer Institute, 84:1402–1410.
    Wilmoth, J. R. (1993) Computational Methods for Fitting and Extrapolating the Lee–Carter Model of Mortality Change. Technical report, Department of Demography, University of California, Berkeley.
    Yang, Y., Fu, W.J. and Land, K. (2004) A methodological comparison of age–period–cohort models: the intrinsic estimator and conventional generalized linear models. Sociological Methodology, 34:75–110.
    Yang, Y., Sam SW and Land, K. (2007) A Simulation Study of the Intrinsic Estimator
    for Age–Period–Cohort Analysis, http://paa2008.princeton.edu/download.aspx?submissionId=80691
    Yang, Y. and Land, K. (2008) Age–Period–Cohort Analysis of Repeated Cross-Section Surveys: Fixed or Random Effects? Sociological Methods and Research 36: 297–326.
    Yang, Y. (2008) Trends in U.S. Adult Chronic Disease Mortality, 1960–1999: Age, Period, and Cohort Variations. Demography 45: 387–416.
    Yang, Y., Sam SW, Fu, W.J. and Land, K. (2008) The Intrinsic Estimator for Age–Period–Cohort Analysis: What It is and How to Use it? American Journal of Sociology 113: 1697–1736.
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0096354007
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    400701.pdf171KbAdobe PDF1581View/Open
    400702.pdf177KbAdobe PDF1547View/Open
    400703.pdf176KbAdobe PDF1601View/Open
    400704.pdf103KbAdobe PDF1441View/Open
    400705.pdf688KbAdobe PDF1984View/Open
    400706.pdf723KbAdobe PDF2987View/Open
    400707.pdf706KbAdobe PDF2782View/Open
    400708.pdf1004KbAdobe PDF2117View/Open
    400709.pdf710KbAdobe PDF2072View/Open
    400710.pdf1380KbAdobe PDF1748View/Open
    400711.pdf947KbAdobe PDF3927View/Open
    400712.pdf615KbAdobe PDF1912View/Open
    400713.pdf613KbAdobe PDF2207View/Open
    400714.pdf1004KbAdobe PDF2317View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback