English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 89327/119107 (75%)
Visitors : 23850982      Online Users : 131
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 資訊科學系 > 學位論文 >  Item 140.119/37112
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/37112


    Title: 基於方向性邊緣特徵之即時物件偵測與追蹤
    Real-Time Object Detection and Tracking using Directional Edge Maps
    Authors: 王財得
    Wang, Tsai-Te
    Contributors: 廖文宏
    Liao, Wen-Hung
    王財得
    Wang, Tsai-Te
    Keywords: 物件偵測
    方向性邊緣特徵
    人臉偵測
    表情識別
    Object Detection
    Directional Edge Maps
    Face Detection
    Facial Expression Recognition
    AdaBoost
    Date: 2007
    Issue Date: 2009-09-19 12:10:47 (UTC+8)
    Abstract: 在電腦視覺的研究之中,有關物件的偵測與追蹤應用在速度及可靠性上的追求一直是相當具有挑戰性的問題,而現階段發展以視覺為基礎互動式的應用,所使用到技術諸如:類神經網路、SVM及貝氏網路等。
    本論文中我們持續深入此領域,並提出及發展一個方向性邊緣特徵集(DEM)與修正後的AdaBoost訓練演算法相互結合,期能有效提高物件偵測與識別的速度及準確性,在實際驗證中,我們將之應用於多種角度之人臉偵測,以及臉部表情識別等兩個主要問題之上;在人臉偵測的應用中,我們使用CMU的臉部資料庫並與Viola & Jones方法進行分析比較,在準確率上,我們的方法擁有79% 的recall及90% 的precision,而Viola & ones的方法則分別為81%及77%;在運算速度上,同樣處理512x384的影像,相較於Viola & Jones需時132ms,我們提出的方法則有較佳的82ms。
    此外,於表情識別的應用中,我們結合運用Component-based及Action-unit model 兩種方法。前者的優勢在於提供臉部細節特徵的定位及追蹤變化,後者主要功用則為進行情緒表情的分類。我們對於四種不同情緒表情的辨識準確度如下:高興(83.6%)、傷心(72.7%)、驚訝(80%) 、生氣(78.1%)。在實驗中,可以發現生氣及傷心兩種情緒較難區分,而高興與驚訝則較易識別。
    Rapid and robust detection and tracking of objects is a challenging problem in computer vision research. Techniques such as artificial neural networks, support vector machine and Bayesian networks have been developed to enable interactive vision-based applications. In this thesis, we tackle this issue by devising a novel feature descriptor named directional edge maps (DEM). When combined with a modified AdaBoost training algorithm, the proposed descriptor can produce effective results in many object detection and recognition tasks.
    We have applied the newly developed method to two important object recognition problems, namely, face detection and facial expression recognition. The DEM-based methodology conceived in this thesis is capable of detecting faces of multiple views. To test the efficacy of our face detection mechanism, we have performed a comparative analysis with the Viola and Jones algorithm using Carnegie Mellon University face database. The recall and precision using our approach is 79% and 90%, respectively, compared to 81% and 77% using Viola and Jones algorithm. Our algorithm is also more efficient, requiring only 82 ms (compared to 132 ms by Viola and Jones) for processing a 512x384 image.
    To achieve robust facial expression recognition, we have combined component-based methods and action-unit model-based approaches. The component-based method is mainly utilized to locate important facial features and track their deformations. Action-unit model-based approach is then employed to carry out expression recognition. The accuracy of classifying different emotion type is as follows: happiness 83.6%, sadness 72.7%, surprise 80%, and anger 78.1%. It turns out that anger and sadness are more difficult to distinguish, whereas happiness and surprise expression have higher recognition rates.
    Reference: [1] Y. Freund and R. E. Schapire. “Experiments with a new boosting algorithm”, proceedings of 13th International Conference on Machine Learning, pp.148-146 Morgan Kaufmann 1996.
    [2] Y. Freund. “Boosting a weak learning algorithm by majority”, Information and Computation, September 1995.
    [3] Y. Freund, R. Iyer, R.E. Schapire and Y. Singer. “An Efficient Boosting Algorithm for Combining Preferences”, Proceedings of International Conference on Machine Learning, 1998.
    [4] Y. Freund and R E. Schapire “A Short Introduction to Boosting”, Proceeding of Japanese Society for artificial Intelligence, Vol. 14(5) pp. 771-780, 1999.
    [5] P. Viola, and M. Jones, “Rapid Object Detection using a Boosted Cascade of Simple Features”, Proceedings of Computer Vision and Pattern Recognition , Vol.1, pp.I-511~I-518, Dec. 2001.
    [6] T. Ojala and M. Pietikainen, “Unsupervised Texture Segmentation Using Feature Distributions”, Pattern Recognition, Vol.32, pp. 477-486, 1999.
    [7] T. Ojala and M. Pietikainen, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns” IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 24, pp. 971–987, 2002.
    [8] 紀煜豪,不同光源環境下的即時膚色辨識,國立政治大學資訊科學研究所,民國96年。
    [9] P. Viola and M. Jones, “Robust Real-Time Face Detection”, Proceedings of Computer Vision and Pattern Recognition, Vol.2, pp.747-765 , July 11, 2003
    [10] H. Rowley, S. Baluja, and T. Kanade, “Neural Network-based Face Detection”, Proceeding of Computer Vision and Pattern Recognition, pp. 963-963, June 1998.
    [11] M. Pontil and A. Verri, "Support Vector Machines for 3D Object Recognition" Transactions on Pattern Analysis and Machine Intelligence, Vol.20(6), pp.637-646, 1998.
    [12] J. Pearl and S. Russel, "Bayesian Networks" in M.A. Arbib(editor), Handbook of Brain Theory and Neural Networks, pp.157-160, 2003.
    [13] http://face-and-emotion.com/dataface/facs/new_version.jsp
    [14] P. Ekman and W. V. Friesen, “Constants Across Cultures in the Face and Emotion”, Journal of personality and Social Psychology, pp.124-129, 1971.
    [15] G. Littlewort, M. Bartlett, I. Fasel, J. Susskind and Javier Movellan. ”Dynamics of Facial Expression Extracted Automatically from Video”, Proceeding of Computer Vision and Pattern Recognition, pp.80, 2004.
    [16] S.C. Tai, K.C. Chung. ”Automatic Facial Expression Recognition System Using Neural Networks”, Proceedings of TENCON, pp.1~4, 2007.
    [17] M. P. Loh, Y. Wong and C. Wong, “Facial Expression Recognition for E-learning Systems using Gabor Wavelet Neural Network”, Proceedings of International Conference on Advanced Learning Technologies, pp.523~525, 2006.
    [18] J. Y. Chang and J. Chen, “Automated Facial Expression Recognition System Using Neural Networks”, Journal of the Chinese Institute of Engineers, 2001.
    [19] F. Tang and B. Deng, “Facial Expression Recognition using AAM and Local Facial Features”, Proceedings of Interdisciplinary Center for Neural Computation, pp.632~635, 2007.
    [20] W. Liu and Z. Wang, “Facial Expression Recognition Based on Fusion of Multiple Gabor Features“, Proceeding of Computer Vision and Pattern Recognition, Vol.3, pp.536~539, 2006.
    [21] C. Shan, S. Haogang, G. McOwan and P. W, “Recognizing Facial Expressions at Low Resolution”, Proceedings of Advanced Video and Signal Based Surveillance, pp.330~335, 2005.
    [22] Q. Xu, P. Zhang, W. Pei, L. Yang and Z. He, “An Automatic Facial Expression Recognition Approach Based on Confusion-Crossed Support Vector Machine Tree”, Proceedings of International Conference on Acoustics, Speech, and Signal Processing, Vol.1, pp.I-625~I-628, 2007.
    [23] I. Kotsia, N. Nikolaidis and I. Pitas, ”Facial Expression Recognition in Videos Using a Novel Multi-Class Support Vector Machines Variant”. Proceedings of International Conference on Acoustics, Speech, and Signal Processing, Vol.2, pp.II-585~II-588, 2007.
    [24] J. Tang, Z. Youwei, “Facial Expression Recognition Based on Motion Information Between Frames”, Proceedings of 8th International Conference on Signal Processing, vol.3, pp.16-20, 2006.
    [25] A. Kanaujia, D. Metaxas, “Recognizing Facial Expressions by Tracking Feature Shapes”, Proceedings of Computer Vision and Pattern Recognition, Vol.2, pp.33-38, 2006.
    [26] S. Jung, D. H. Kim, K. Ho and M. J. Chung, “Efficient Rectangle Feature Extraction for Real-time Facial Expression Recognition based on AdaBoost”, Proceedings of Intelligent Robots and Systems, pp.1941-1946, Aug. 2005.
    [27] H. Deng, J. Zhu, M. R. Lyu and I. King, “Two-stage Multi-class AdaBoost for Facial Expression Recognition”, Proceedings of International Joint Conference on Neural Networks, pp. 3005-3010, 2007.
    [28] P. S. Aleksic and A. K. Katsaggelos, “Automatic Facial Expression Recognition Using Facial Animation Parameters and Multistream HMMs”, Transactions on Information Forensics and Security, Vol.1, Issue:1, pp.3~11, 2006.
    [29] Q. X. Xu and J. Wei, “Application of Wavelet Energy Feature in Facial Expression Recognition”, Proceedings of IEEE International Workshop on Anti-counterfeiting Security, Identification, pp.169~174, 2007.
    [30] K. S. Cho, Y. Kim and Y.ang-Bok Lee, “Real-time Expression recognition System using Active Appearance Model and EFM”, Proceedings of Computational Intelligence and Security, Vol.1, pp. 747~750, 2006
    [31] D. Torre, F. Campoy, J. Ambadar, Z. Cohn and F. Jeffrey, “Temporal Segmentation of Facial Behavior”, Proceedings of International Conference on Computer Vision, pp.1~8, 2007.
    [32] X. Feng, B. Lv and Z. Li, “Automatic Facial Expression Recognition Using Both Local and Global Information”, Proceedings of Chinese Control Conference, pp.1878~1881, 2006.
    [33] G. Zhou, Y. Zhan and J. Zhang, “Facial Expression Recognition Based on Selective Feature Extraction”, Proceedings of Intelligent Systems Design and Applications, Vol.2, pp.412~417, 2006.
    [34] F. Dornaika, F. Davoine, “Facial Expression Recognition using Auto-regressive Models”, Proceeding of Computer Vision and Pattern Recognition, Vol.2, pp.520-523, 2006.
    [35] M. A. Turk, A. P. Pentland, “Face Recognition Using Eigenfaces” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586-591, 1991.
    [36] T. F. Cootes, G. J. Edwards, and C. J. Taylor. ”Active Appearance Models” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.23, Issue:6, pp.681-685, 2001.
    [37] T. F. Cootes, C. J. Taylor, D. H. Cooper and J. Graham, ”Training models of shape from sets of examples”, Proceedings of British Machine Vision Conference, pp. 266–275, 1992.
    [38] S. Baker, R. Gross, and I. Matthews, “Lucas-Kanade 20 Years On: A Unifying Framework: Part 3” tech. report Carnegie Mellon University, 2003.
    Description: 碩士
    國立政治大學
    資訊科學學系
    95971003
    96
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0095971003
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    100301.pdf142KbAdobe PDF928View/Open
    100302.pdf142KbAdobe PDF1005View/Open
    100303.pdf146KbAdobe PDF1398View/Open
    100304.pdf51KbAdobe PDF992View/Open
    100305.pdf156KbAdobe PDF1505View/Open
    100306.pdf170KbAdobe PDF1713View/Open
    100307.pdf366KbAdobe PDF9178View/Open
    100308.pdf1431KbAdobe PDF4524View/Open
    100309.pdf4252KbAdobe PDF14822View/Open
    100310.pdf145KbAdobe PDF973View/Open
    100311.pdf154KbAdobe PDF1119View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback