English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 109951/140892 (78%)
Visitors : 46219123      Online Users : 821
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 心理學系 > 學位論文 >  Item 140.119/49446
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/49446


    Title: 慢性疼痛或壓力情境對於類鴉片delta受體的調節與其抗憂鬱功能的改變
    Effects of chronic pain or stress on the modulation of delta opioid receptor and its mediated antidepressant-like effect
    Authors: 陳昶名
    Contributors: 柯美全
    陳昶名
    Keywords: 憂鬱症
    發炎性疼痛
    長期壓力
    類鴉片delta受體
    制效劑
    depression
    inflammatory pain
    chronic stress
    delta opioid receptor
    agonist
    Date: 2009
    Issue Date: 2010-12-08 11:40:34 (UTC+8)
    Abstract: 憂鬱症是盛行的精神疾病之一。慢性疼痛或是處在長期壓力情境的患者常與憂鬱症產生共病。在動物研究中,類鴉片delta受體制效劑能產生抗憂鬱效果,並且在發炎性疼痛的研究也指出類鴉片delta受體制效劑能展現抗痛覺過敏的效果。本研究主要利用大白鼠腦室內給予類鴉片delta受體制效劑SNC80以及三環抗憂鬱劑amitriptyline,來探討並比較其所產生的抗憂鬱效果在發炎性疼痛或長期壓力情境下與正常情境下的異同。大白鼠強迫游泳試驗被用來比較測試藥物的抗憂鬱效果;佛氏完全佐劑經由皮下注射至大白鼠右後腳掌底板來產生發炎性疼痛;腎上腺皮質酮經由皮下注射且持續21天來產生長期性壓力;西方墨點法用來檢驗在發炎性疼痛或長期壓力下,類鴉片delta受體蛋白質在大白鼠海馬迴的細胞膜上的改變。另外,拮抗劑實驗則用來確認類鴉片delta受體所產生的抗憂鬱效果。實驗結果顯示,大白鼠在正常情境下,SNC80及amitriptyline皆能產生抗憂鬱效果;然而在發炎性疼痛下,SNC80所產生的抗憂鬱效果有提高的表現,並且類鴉片delta受體蛋白質的數量在海馬迴的細胞膜上也隨著疼痛的時間增長而增加,amitriptyline則跟正常情境下的效果相似。另外,大白鼠在長期性壓力下,SNC80的抗憂鬱效果則沒有提高的表現,並且類鴉片delta受體蛋白質的數量在海馬迴的細胞膜上也未受到改變。本研究透過行為實驗提出類鴉片delta受體制效劑的藥理特性,並用分子生物學的方法來對應行為實驗的結果。本研究可做為未來類鴉片delta受體制效劑在治療慢性疼痛的憂鬱症患者上,可能發展為抗憂鬱藥的一個證據。
    Depression is one of the most prevalent mental illnesses all over the world. Patients with chronic pain or stress often have depression. Previous studies have shown that delta opioid receptor (DOR) agonists produced antidepressant-like effects in animal models and that antihyperalgesic effects of DOR agonists can be enhanced in rats under inflammatory pain. The aim of the study was to investigate and compare the antidepressant-like effects of a DOR agonist, SNC80, and a tricyclic antidepressant, amitriptyline, following intracerebroventricular (i.c.v.) administration in rats under different states. The forced swim test was used to determine the antidepressant-like effects of test compounds. Complete Freund’s adjuvant was injected subcutaneously into the right hind paw of rats to elicit inflammatory pain. Corticosterone was injected subcutaneously once per day for 21 days to induce chronic stress. The western blot was used to quantify the levels of DOR protein on plasma membrane in the hippocampus of rats under inflammatory pain or chronic stress. In addition, antagonist experiment was conducted to verify the receptor mechanism underlying the antidepressant-like effects of DOR agonist. Results indicated that i.c.v. SNC80 and amitriptyline dose-dependently produced antidepressant-like effects in rats under normal state. More importantly, the potency of SNC80-induced antidepressant-like effects, but not amitriptyline, was enhanced in rats under inflammatory pain. In addition, up-regulation of supraspinal DORs was time-dependently associated with enhanced antidepressant-like effects of SNC80 in rats under inflammatory pain. On the other hand, SNC80 did not produce enhanced antidepressant-like effects, and DOR density was not changed in rats under chronic stress. This study provides evidence of the DOR agonist’s state-dependent effects and suggests that DOR agonists may be more effective as potential antidepressants for patients with depression comorbid with chronic pain.
    Reference: Adachi, M., Barrot, M., Autry, A. E., Theobald, D., & Monteggia, L. M. (2008). Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biological Psychiatry, 63(7), 642-649.
    Altar, C. A. (1999). Neurotrophins and depression. Trends in Pharmacological Sciences, 20(2), 59-61.
    American Psychiatric Association. (2000). Diagnostic and Statistical Manual of Mental Disorders, 4th edition, Text Revision. Arlington, VA, American Psychiatric Association.
    Arnold, L. M. (2008). Management of fibromyalgia and comorbid psychiatric disorders. The Journal of Clinical Psychiatry, 69(suppl 2), 14-19.
    Arroll, B., Macgillivray, S., Ogston, S., Reid, I., Sullivan, F., Williams, B., & Crombie, I. (2005). Efficacy and tolerability of tricyclic antidepressants and SSRIs compared with placebo for treatment of depression in primary care: a meta-analysis. Annals of Family Medicine, 3(5), 449-456.
    Bair, M. J., Robinson, R. L., Katon, W., & Kroenke, K. (2003). Depression and pain comorbidity: a literature review. Archives of Internal Medicine, 163(20), 2433-2445.
    Bair, M. J., Wu, J., Damush, T. M., Sutherland, J. M, & Kroenke, K. (2008). Association of depression and anxiety alone and in combination with chronic musculoskeletal pain in primary care patients. Psychosomatic Medicine, 70(8), 890-897.
    Bao, L., Jin, S. X., Zhang, C., Wang, L. H., Xu, Z. Z., Zhang, F. X., Wang, L. C., Ning, F. S., Cai, H. J., Guan, J. S., Xiao, H. S., Xu, Z. Q., He, C., Hokfelt, T., Zhou, Z., & Zhang, X. (2003). Activation of delta opioid receptors induces receptor insertion and neuropeptide secretion. Neuron, 37(1), 121-133.
    Berrocoso, E., Sánchez-Blázquez, P., Garzón, J., & Mico, J. A. (2009). Opiates as antidepressants. Current Pharmaceutical Design, 15(14), 1612-1622.
    Berton, O., & Nestler, E. J. (2006). New approaches to antidepressant drug discovery: beyond monoamines, Nature Reviews Neuroscience, 7(2), 137-151.
    Bie, B., & Pan, Z. Z. (2007). Trafficking of central opioid receptors and descending pain inhibition. Molecular Pain, 3, 37.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–54.
    Bramham, C. R., & Messaoudi, E. (2005). BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Progress in Neurobiology, 76(2), 99-125.
    Broom, D. C., Jutkiewicz, E. M., Rice, K. C., Traynor, J. R., & Woods, J. H. (2002a). Behavioral effects of δ-opioid receptor agonists: potential antidepressants? Japan Journal of Pharmacology, 90(1), 1–6.
    Broom, D. C., Jutkiewicz, E. M., Folk, J. E., Traynor, J. R., Rice, K. C., & Woods, J. H. (2002b). Nonpeptidic delta-opioid receptor agonists reduce immobility in the forced swim assay in rats. Neuropsychopharmacology, 26(6), 744-755.
    Broom, D. C., Jutkiewicz, E. M., Folk, J. E., Traynor, J. R., Rice, K. C., & Woods, J. H. (2002c). Convulsant activity of a non-peptidic delta-opioid receptor agonist is not required for its antidepressant-like effects in Sprague-Dawley rats. Psychopharmacology, 164(1), 42-48.
    Bruce, T. O. (2008). Comorbid depression in rheumatoid arthritis: pathophysiology and clinical implications. Current Psychiatry Reports, 10(3), 258-264.
    Cahill, C. M., Morinville, A., Hoffert, C., O`Donnell, D., & Beaudet, A. (2003). Up-regulation and trafficking of delta opioid receptor in a model of chronic inflammation: implications for pain control. Pain, 101(1-2), 199-208.
    Cahill, C. M., Holdridge, S. V., & Morinville, A. (2007). Trafficking of delta-opioid receptors and other G-protein-coupled receptors: implications for pain and analgesia. Trends in Pharmacological Sciences, 28(1), 23-31.
    Cassano, P., & Fava, M. (2002). Depression and public health, an overview. Journal of Psychosomatic Research, 53(4), 849-857.
    Castrén, E., Võikar, V., & Rantamäki, T. (2007). Role of neurotrophic factors in depression. Current Opinion in Pharmacology, 7(1), 18-21.
    Chang, K. J., Porreca, F., & Woods, J. H. (2004). The delta opioid receptor, Vol 1, 1st Ed., Marcel Dekker, Inc., New York.
    Chen, B., Dowlatshahi, D., MacQueen, G. M., Wang, J. F., & Young, L. T. (2001). Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biological Psychiatry 50(4), 260-265.
    Codd, E. E., Carson, J. R., Colburn, R. W., Stone, D. J., Van Besien, C. R., Zhang, S. P., Wade, P. R., Gallantine, E. L., Meert, T. F., Molino, L., Pullan, S., Razler, C. M., Dax, S. L., & Flores C. M. (2009). JNJ-20788560 [9-(8-azabicyclo[3.2.1]oct-3-ylidene)-9H-xanthene-3-carboxylic acid diethylamide], a selective delta opioid agonist, is a potent and efficacious antihyperalgesic agent that does not produce respiratory depression, pharmacologic tolerance, or physical dependence. The Journal of Pharmacology and Experimental Therapeutics, 329(1), 241-251.
    Coluzzi, F., & Mattia, C. (2005). Mechanism-based treatment in chronic neuropathic pain: the role of antidepressants. Current Pharmaceutical Design, 11(23), 2945-2960.
    Comer, S. D., Hoenicke, E. M., Sable, A. I., McNutt, R. W., Chang, K. J., De Costa, B. R., Mosberg, H. I., & Woods, J. H. (1993). Convulsive effects of systemic administration of the delta opioid agonist BW373U86 in mice. The Journal of Pharmacology and Experimental Therapeutics, 267(2), 888-895.
    Conway, K. P., Compton, W., Stinson, F. S., & Grant, B. F. (2006). Life time comorbidity of DSM-IV mood and anxiety disorders and specific drug use disorders: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Journal of Clinical Psychiatry, 67(2), 247-257.
    Detke, M. J., Rickels, M., & Lucki, I., (1995). Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology 121(1), 66–72.
    Devine, D. P., & Wise, R. A. (1994). Self-administration of morphine, DAMGO, and DPDPE into the ventral tegmental area of rats. The Journal of Neuroscience, 14(4), 1978-1984.
    De Foubert, G., Carney, S. L., Robinson, C. S., Destexhe, E. J., Tomlinson, R., Hicks, C. A., Murray, T. K., Gaillard, J. P., Deville, C., Xhenseval, V., Thomas, C. E., O`Neill, M. J., & Zetterström, T. S. (2004). Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment. Neuroscience, 128(3), 597-604.
    de Vries, T. J., Babovic-Vuksanovic, D., Elmer, G., & Shippenberg, T. S. (1995). Lack of involvement of delta-opioid receptors in mediating the rewarding effects of cocaine. Psychopharmacology, 120(4), 442-448.
    Do Carmo, G. P., Folk, J. E., Rice, K. C., Chartoff, E., Carlezon, W. A., & Negus, S. S. (2009). The selective non-peptidic delta opioid agonist SNC80 does not facilitate intracranial self-stimulation in rats. European Journal of Pharmacology, 604(1-3), 58-65.
    Drevets, W. C. (2001). Neuroimaging and neuropathological studies of depression: Implications for the cognitive-emotional features of mood disorders. Current Opinion in Neurobiology, 11(2), 240-249.
    Drolet, G., Dumont, E. C., Gosselin, I., Kinkead, R., Laforest, S., & Trottier, J. F. (2001). Role of endogenous opioid system in the regulation of the stress response. Progress in Neuropsychopharmacolgy and Biological Psychiatry, 25(4), 729-741.
    Duman, R. S., & Monteggia, L. M. (2006). A neurotrophic model for stress-related mood disorders. Biological Psychiatry, 59(12), 1116-1127.
    Dwivedi, Y., Rizavi, H. S., & Pandey, G. N. (2006). Antidepressants reverse corticosterone-mediated decrease in brain-derived neurotrophic factor expression: differential regulation of specific exons by antidepressants and corticosterone. Neuroscience, 139(3), 1017-1029.
    Dykstra, L. A., Schoenbaum, G. M., Yarbrough, J., McNutt, R., & Chang, K. J. (1993). A novel delta opioid agonist, BW373U86, in squirrel monkeys responding under a schedule of shock titration. The Journal of Pharmacology and Experimental Therapeutics, 267(2), 875-882.
    Evans, C. J., Keith, D. E., Morrison, H., Magendzo, K., & Edwards, R. H. (1992). Cloning of a delta opioid receptor by functional expression. Science, 258(5090), 1952-1955.
    Filliol, D., Ghozland, S., Chluba, J., Martin, M., Matthes, H. W., Simonin, F., Befort, K., Gavériaux-Ruff, C., Dierich, A., LeMeur, M., Valverde, O., Maldonado, R., & Kieffer, B. L. (2000). Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses. Nature Genetics, 25(2), 195-200.
    Fraser, G. L., Gaudreau, G. A., Clarke, P. B., Ménard, D. P., & Perkins, M. N. (2000). Antihyperalgesic effects of delta opioid agonists in a rat model of chronic inflammation. British Journal of Pharmacology, 129(8), 1668-1672.
    Fuchs, E., & Gould, E. (2000). Mini-review: in vivo neurogenesis in the adult brain: regulation and functional implications. The European Journal of Neuroscience, 12(7), 2211-2214.
    Fukuda, K., Kato, S., Mori, K., Nishi, M., & Takeshima, H. (1993). Primary structures and expression from cDNAs of rat opioid receptor delta- and mu-subtypes. FEBS Letters, 327(3), 311-314.
    Fusa, K., Takahashi, I., Watanabe, S., Aono, Y., Ikeda, H., Saigusa, T., Nagase, H., Suzuki, T., Koshikawa, N., & Cools, A. R. (2005). The non-peptidic delta opioid receptor agonist TAN-67 enhances dopamine efflux in the nucleus accumbens of freely moving rats via a mechanism that involves both glutamate and free radicals. Neuroscience, 130(3), 745–755.
    Gavériaux-Ruff, C., & Kieffer, B. L. (2002). Opioid receptor genes inactivated in mice: the highlights. Neuropeptides, 36(2-3), 62-71.
    Gendron, L., Lucido, A. L., Mennicken, F., O`Donnell, D., Vincent, J. P., Stroh, T., & Beaudet, A. (2006). Morphine and pain-related stimuli enhance cell surface availability of somatic delta-opioid receptors in rat dorsal root ganglia. The Journal of Neuroscience, 26(3), 953-962.
    Gendron, L., Esdaile, M. J., Mennicken, F., Pan, H., O`Donnell, D., Vincent, J. P., Devi, L. A., Cahill, C. M., Stroh, T., & Beaudet, A. (2007). Morphine priming in rats with chronic inflammation reveals a dichotomy between antihyperalgesic and antinociceptive properties of deltorphin. Neuroscience, 144(1), 263-274.
    Gillman, P. K. (2007). Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. British Journal of Pharmacology, 151(6), 737-748.
    Gorzalka, B.B., Brotto, L.A., & Hong, J.J. (1999). Corticosterone regulation of 5-HT2A receptor mediated behaviors: attenuation by melatonin. Physiology and Behavior, 67(3), 439–443.
    Guan, J. S., Xu, Z. Z., Gao, H., He, S. Q., Ma, G. Q., Sun, T., Wang, L. H., Zhang, Z. N., Lena, I., Kitchen, I., Elde, R., Zimmer, A., He, C., Pei, G., Bao, L., & Zhang, X. (2005). Interaction with vesicle luminal protachykinin regulates surface expression of delta-opioid receptors and opioid analgesia. Cell, 122(4), 619-631.
    Hamity, M. V., White, S. R., & Hammond, D. L. (2010). Effects of neurokinin-1 receptor agonism and antagonism in the rostral ventromedial medulla of rats with acute or persistent inflammatory nociception. Neuroscience, 165(3), 902-913.
    Hammen, C., & Watkins, E. (2008). Depression, 2nd edition. New York, NY: Psychology Press.
    Hill, M. N., Brotto, L. A., Lee, T. T., & Gorzalka, B. B. (2003). Corticosterone attenuates the antidepressant-like effects elicited by melatonin in the forced swim test in both male and female rats. Progress in Neuropsychopharmacology & Biological Psychiatry, 27(6), 905-911.
    Holsboer, F., & Ising, M. (2008). Central CRH system in depression and anxiety -- evidence from clinical studies with CRH1 receptor antagonists. European Journal of Pharmacology, 583(2-3), 350-357.
    Hurley, R. W., & Hammond, D. L. (2000). The analgesic effects of supraspinal mu and delta opioid receptor agonists are potentiated during persistent inflammation. The Journal of Neuroscience, 20(3), 1249-1259.
    Jann, M. W., & Slade, J. H. (2007). Antidepressant agents for the treatment of chronic pain and depression. Pharmacotherapy, 27(11), 1571-1587.
    Johnson, S. A., Fournier, N. M., & Kalynchuk, L. E. (2006). Effect of different doses of corticosterone on depression-like behavior and HPA axis responses to a novel stressor. Behavioural Brain Research, 168(2), 280-288.
    Jutkiewicz, E. M., Rice, K. C., Traynor, J. R., & Woods, J. H. (2005). Separation of the convulsions and antidepressant-like effects produced by the delta-opioid agonist SNC80 in rats. Psychopharmacology 182(4), 588-596.
    Jutkiewicz, E. M. (2006). The antidepressant-like effects of delta-opioid receptor agonists. Molecular Interventions, 6(3), 162–169.
    Katon, W., & Ciechanowski, P. (2002). Impact of major depression on chronic medical illness. Journal of Psychosomatic Research, 53(4), 859-863.
    Kelly, J. P., Wrynn, A. S., & Leonard, B. E. (1997). The olfactory bulbectomized rat as a model of depression: an update. Pharmacology and Therapeutics, 74(3), 299-316.
    Kessler, R. C., Chiu, W. T., Demler, O., Merikangas, K. R., & Walters, E. E. (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62(6), 617-627.
    Kieffer, B. L., Befort, K., Gaveriaux-Ruff, C., & Hirth, C. G. (1992). The delta opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proceedings of the National Academy of Sciences of the United States of America, 89(24), 12048-12052.
    Kieffer, B. L., & Gavériaux-Ruff, C. (2002). Exploring the opioid system by gene knockout. Progress in Neurobiology, 66(5), 285-306.
    Kita, A., Imano, K., Seto, Y., Yakuo, I., Deguchi, T., & Nakamura, H. (1997). Antinociceptive and antidepressant-like profiles of BL-2401, a novel enkephalinase inhibitor, in mice and rats. Japan Journal of Pharmacology, 75(4), 337-346.
    Knapp, R. J., Malatynska, E., Fang, L., Li, X., Babin, E., Nguyen, M., Santoro, G., Varga, E. V., Hruby, V. J., Roeske, W. R., & Yamamura, H. I. (1994). Identification of a human delta opioid receptor: cloning and expression. Life Sciences, 54(25), PL463-469.
    Konig, M., Zimmer, A. M., Steiner, H., Holmes, P. V., Crawley, J. N., Brownstein, M. J., & Zimmer, A., (1996). Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature, 383(6600), 535–538.
    Kozisek, M. E., Middlemas, D., & Bylund, D. B. (2008). Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. Pharmacology and Therapeutics, 117(1), 30-51.
    Krishnan, V., & Nestler, E. J. (2008). The molecular neurobiology of depression. Nature, 455(7215), 894-902.
    Kuroda, Y., Mikuni, M., Ogawa, T., & Takahashi, K. (1992). Effect of ACTH, adrenalectomy, and the combination treatment on the density of 5-HT2 receptor binding sites in the neocortex of the rat forebrain and 5-HT2 receptor mediated wet dog shake behaviors. Psychopharmacology, 108(1-2), 27–32.
    Longoni, R., Mulas, A., Carboni, E., Garau, L., Melchiorri, P., & Di Chiara, G. (1991). [D-Ala2]deltorphin II: D1-dependent stereotypies and stimulation of dopamine release in the nucleus accumbens. The Journal of Neuroscience, 11(6), 1565–1576.
    Longoni, R., Cadoni, C., Mulas, A., Di Chiara, G., & Spina, L. (1998). Dopamine-dependent behavioural stimulation by non-peptide delta opioids BW373U86 and SNC 80: II. Place preference and brain microdialysis studies in rats. Behavioral Pharmacology, 9(1),9–14.
    López-Muñoz, F., & Alamo, C. (2009). Monoaminergic neurotransmission: the history of the discovery of antidepressants from 1950s until today. Current Pharmaceutical Design, 15(14), 1563-1586.
    Lydiatt, W. M., Moran, J., & Burke, W. J. (2009). A review of depression in the head and neck cancer patient. Clinical Advances in hematology and Oncology, 7(6), 397-403.
    Mansour, A., Fox, C. A., Akil, H., & Watson, S. J. (1995). Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends in Neurosciences, 18(1), 22-29.
    Marks, W., Fournier, N. M., & Kalynchuk, L. E. (2009). Repeated exposure to corticosterone increases depression-like behavior in two different versions of the forced swim test without altering nonspecific locomotor activity or muscle strength. Physiology and Behavior, 98(1-2), 67-72.
    Martinowich, K., Manji, H., & Lu, B. (2007). New insights into BDNF function in depression and anxiety. Nature Neuroscience, 10(9), 1089-1093.
    Meyer, M. E., & Meyer, M. E. (1993). Behavioral effects of opioid peptide agonists DAMGO, DPDPE, and DAKLI on locomotor activities. Pharmacology, Biochemistry, and Behaviors, 45(2), 315-320.
    Monteggia, L. M., Barrot, M., Powell, C. M., Berton, O., Galanis, V., Gemelli, T., Meuth, S., Nagy, A., Greene, R. W., & Nestler, E. J. (2004). Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proceedings of the National Academy of Sciences of the United States of America, 101(29), 10827-10832.
    Monteggia, L. M., Luikart, B., Barrot, M., Theobold, D., Malkovska, I., Nef, S., Parada, L. F., & Nestler, E. J. (2007). Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biological Psychiatry, 61(2), 187-197.
    Morinville, A., Cahill, C. M., Kieffer, B., Collier, B., & Beaudet, A. (2004). Mu-opioid receptor knockout prevents changes in delta-opioid receptor trafficking induced by chronic inflammatory pain. Pain, 109(3), 266-273.
    Negus, S. S., Gatch, M. B., Mello, N. K., Zhang, X., & Rice, K. (1998). Behavioral effects of the delta-selective opioid agonist SNC80 and related compounds in rhesus monkeys. The Journal of Pharmacology and Experimental Therapeutics, 286(1), 362-375.
    Nielsen, D. M., Carey, G. J., & Gold, L. H. (2004). Antidepressant-like activity of corticotropin-releasing factor type-1 receptor antagonists in mice. European Journal of Pharmacology, 499(1-2), 135-146.
    Nielsen, D. M. (2006). Corticotropin-releasing factor type-1 receptor antagonists: the next class of antidepressants? Life Sciences, 78(9), 909-919.
    Parker, K. J., Schatzberg, A. F., & Lyons, D. M. (2003). Neuroendocrine aspects of hypercortisolism in major depression. Hormones and Behavior, 43(1), 60-66.
    Patwardhan, A. M., Berg, K. A., Akopain, A. N., Jeske, N. A., Gamper, N., Clarke, W. P., & Hargreaves, K. M. (2005). Bradykinin-induced functional competence and trafficking of the delta-opioid receptor in trigeminal nociceptors. The Journal of Neuroscience, 25(39), 8825-8832.
    Paxinos, G., & Watson, C., (2007). The Rat Brain in Stereotaxic Coordinates, 6th edition. Academic press, Boston, Massachusetts.
    Pert, C. B., & Snyder, S. H., (1973). Opiate receptor: demonstration in nervous tissue. Science 179(77), 1011–1014.
    Pert, C. B., Pasternak, G. W., & Snyder, S. H. (1973). Opiate agonists and antagonists discriminated by receptor binding in brain. Science, 182(119), 1359–1361.
    Petrillo, P., Angelici, O., Bingham, S., Ficalora, G., Garnier, M., Zaratin, P. F., Petrone, G., Pozzi, O., Sbacchi, M., Stean, T. O., Upton, N., Dondio, G. M., & Scheideler, M. A. (2003) Evidence for a selective role of the delta-opioid agonist [8R-(4bS*,8aa,8ab,12bb)]7,10-dimethyl-1-methoxy- 11-(2-methylpropyl)oxycarbonyl 5,6,7,8,12,12b-hexahydro-(9h)-4,8- methanobenzofuro [3,2-e]pyrrolo[2,3-g]isoquinoline hydrochloride (SB-235863) in blocking hyperalgesiaassociated with inflammatory and neuropathic pain responses. The Journal of Pharmacology and Experimental Therapeutics, 307(3), 1079–1089.
    Porsolt, R. D., Le Pichon, M., & Jalfre, M. (1977). Depression: a new animal model sensitive to antidepressant treatments. Nature, 266(5604), 730-732.
    Porsolt, R. D., Anton, G., Blavet, N., & Jalfre, M. (1978). Behavioural despair in rats: a new model sensitive to antidepressant treatments. European Journal of Pharmacology, 47(4), 379-391.
    Ragnauth, A., Schuller, A., Morgan, M., Chan, J., Ogawa, S., Pintar, J., Bodnar, R. J., & Pfaff, D. W., (2001). Female preproenkephalinknockout mice display altered emotional responses. Proceedings of the National Academy of Science of the United States of America, 98(4), 1958–1963.
    Rapaport, H. M. (2007). Translating the evidence on atypical depression into clinical practice. The Journal of Clinical Psychiatry, 68(suppl 3), 31-36.
    Redmond, A. M., Kelly, J. P., & Leonard, B. E. (1997). Behavioural and neurochemical effects of dizocilpine in the olfactory bulbectomized rat model of depression. Pharmacology, Biochemistry, and Behavior, 58(2), 355–359.
    Regier, D. A., Rae, D. S., Narrow, W. E., Kaebler, C. T., & Schatzberg, A. F. (1998). Prevalence of anxiety disorders and their comorbidity with mood and addictive disorders. British Journal of Psychiatry, 173(34), 24-28.
    Rupniak, N. M. (2003). Animal models of depression: challenges from a drug development perspective. Behavioral Pharmacology, 14(5-6), 385-390.
    Satoh, M., & Minami, M. (1995). Molecular pharmacology of the opioid receptors. Pharmacology & Therapeutics, 68(3), 343-364.
    Saitoh, A., Kimura, Y., Suzuki, T., Kawai, K., Nagase, H., & Kamei, J. (2004). Potential anxiolytic and antidepressant-like activities of SNC80, a selective delta-opioid agonist, in behavioral models in rodents. Journal of pharmacological sciences, 95(3), 374-380.
    Saitoh, A., Hirose, N., Yamada, M., Yamada, M., Nozaki, C., Oka, T., & Kamei, J., (2006). Changes in emotional behavior of mice in the hole-board test after olfactory bulbectomy. Journal of Pharmacological Sciences, 102(4), 377–386.
    Saitoh, A., Yamada, M., Yamada, M., Takahashi, K., Yamaguchi, K., Murasawa, H., Nakatani, A., Tatsumi, Y., Hirose, N., & Kamei, J. (2008). Antidepressant-like effects of the delta-opioid receptor agonist SNC80 ([(+)-4-[(alphaR)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-methoxyphenyl)methyl]-N,N-diethylbenzamide) in an olfactory bulbectomized rat model. Brain Research, 1208, 160-169.
    Sawynok, J., & Reid, A. (2001). Antinociception by tricyclic antidepressants in the rat formalin test: differential effects on different behaviours following systemic and spinal administration. Pain, 93(1), 51-59.
    Schepers, R. J., Mahoney, J. L., & Shippenberg, T. S. (2008). Inflammation-induced changes in rostral ventromedial medulla mu and kappa opioid receptor mediated antinociception. Pain, 136(3), 320-330.
    Shalev, A. Y., Freedman, S., Perry, T., Brandes, D., Sahar, T., Orr, S. P., & Pitman, R. K. (1998). Prospective study of posttraumatic stress disorder and depression following trauma. American Journal of Psychiatry, 155(5), 630-637.
    Sheline, Y. I. (2003). Neuroimaging studies of mood disorder effects on the brain. Biological Psychiatry, 54(3), 338-352.
    Shimizu, E., Hashimoto, K., Okamura, N., Koike, K., Komatsu, N., Kumakiri, C., Nakazato, M., Watanabe, H., Shinoda, N., Okada, S., & Iyo, M. (2003). Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biological Psychiatry, 54(1), 70-75.
    Shirayama, Y., Chen, A. C., Nakagawa, S., Russell, D. S., & Duman, R. S. (2002). Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. The Journal of Neuroscience, 22(8), 3251-3261.
    Sihvola, E., Keski-Rahkonen, A., Dick, D. M., Pulkkinen, L., Rose, R. J., Marttunen, M., & Kaprio, J. (2007). Minor depression in adolescence: phenomenology and clinical correlates. Journal of Affective Disorders, 97(1-3), 211-218.
    Simonin, F., Befort, K., Gavériaux-Ruff, C., Matthes, H., Nappey, V., Lannes, B., Micheletti, G., & Kieffer, B. (1994). The human delta-opioid receptor: genomic organization, cDNA cloning, functional expression, and distribution in human brain. Molecular Pharmacology, 46(6), 1015-1021.
    Simonin, F., Valverde, O., Smadja, C., Slowe, S., Kitchen, I., Dierich, A., Le Meur, M., Roques, B. P., Maldonado, R., & Kieffer, B. L. (1998). Disruption of the kappa-opioid receptor gene in mice enhances sensitivity to chemical visceral pain, impairs pharmacological actions of the selective kappa-agonist U-50,488H and attenuates morphine withdrawal. The EMBO Journal, 17(4), 886-897.
    Siuciak, J. A., Boylan, C., Fritsche, M., Altar, C. A., & Lindsay, R. M. (1996). BDNF increases monoaminergic activity in rat brain following intracerebroventricular or intraparenchymal administration. Brain Research, 710(1-2), 11-20.
    Siuciak, J. A., Lewis, D. R., Wiegand, S. J., & Lindsay, R. M. (1997). Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacology, Biochemistry, and Behavior, 56(1), 131-137.
    Song, C., & Leonard, B. E. (2005). The olfactory bulbectomised rat as a model of depression. Neuroscience and Biobehavioral Reviews, 29(4-5), 627–647.
    Sora, I., Takahashi, N., Funada, M., Ujike, H., Revay, R. S., Donovan, D. M., Miner, L. L., & Uhl, G. R. (1997). Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proceedings of the National Academy of Sciences of the United States of America, 94(4), 1544-1549.
    Sora, I., Li, X. F., Funada, M., Kinsey, S., & Uhl, G. R. (1999). Visceral chemical nociception in mice lacking mu-opioid receptors: effects of morphine, SNC80 and U-50,488. European Journal of Pharmacology, 366(2-3), R3-5.
    Sousa, N., Madeira, M. D., & Paula-Barbosa, M. M. (1998). Effects of corticosterone treatment and rehabilitation on the hippocampal formation of neonatal and adult rats. An unbiased stereological study. Brain Research, 794(2), 199-210
    Spoletini, I., Caltagirone, C., Ceci, M., Gianni, W., & Spalletta, G. (2009). Management of pain in cancer patients with depression and cognitive deterioration. Surgical Oncology, doi:10.1016/j.suronc.2009.11.006.
    Steffens, D. C., Krishnan, K. R., & Helms, M. J. (1997). Are SSRIs better than TCAs? Comparison of SSRIs and TCAs: a meta-analysis. Depression and Anxiety, 6(1), 10-18.
    Suzuki, T., Tsuji, M., Mori, T., Misawa, M., & Nagase, H. (1996). The effects of dopamine D1 and D2 receptor antagonists on the rewarding effects of delta 1 and delta 2 opioid receptor agonists in mice. Psychopharmacology, 124(3), 211-218.
    Takahashi, K., Saitoh, A., Yamada, M., Maruyama, Y., Hirose, N., Kamei, J., & Yamada, M. (2008). Gene expression profiling reveals complex changes in the olfactory bulbectomy model of depression after chronic treatment with antidepressants. Journal of Pharmacological Sciences, 108(3), 320-334.
    Tardito, D., Perez, J., Tiraboschi, E., Musazzi, L., Racagni, G., & Popoli, M. (2006). Signaling pathways regulating gene expression, neuroplasticity, and neurotrophic mechanisms in the action of antidepressants: a critical overview. Pharmacological Reviews, 58(1), 115-134.
    Tejedor-Real, P., Micó, J. A., Smadja, C., Maldonado, R., Roques, B. P., & Gilbert-Rahola, J. (1998). Involvement of delta-opioid receptors in the effects induced by endogenous enkephalins on learned helplessness model. European Journal of Pharmacology, 354(1), 1-7.
    Tongiorgi, E., Domenici, L., & Simonato, M. (2006). What is the biological significance of BDNF mRNA targeting in the dendrites? Clues from epilepsy and cortical development. Molecular Neurobiology, 33(1), 17-32.
    Torregrossa, M. M., Isgor, C., Folk, J. E., Rice, K. C., Watson, S. J., & Woods, J. H. (2004). The delta-opioid receptor agonist (+)BW373U86 regulates BDNF mRNA expression in rats. Neuropsychopharmacology, 29(4), 649-659.
    Torregrossa, M. M., Folk, J. E., Rice, K. C., Watson, S. J., & Woods J. H. (2005). Chronic administration of the delta opioid receptor agonist (+)BW373U86 and antidepressants on behavior in the forced swim test and BDNF mRNA expression in rats. Psychopharmacology, 183(1), 31-40.
    Torregrossa, M. M., Jutkiewicz, E. M., Mosberg, H. I., Balboni, G., Watson, S. J., & Woods, J. H. (2006). Peptidic delta opioid receptor agonists produce antidepressant-like effects in the forced swim test and regulate BDNF mRNA expression in rats. Brain Research, 1069(1), 172-181.
    Trescot, A. M., Datta, S., Lee, M., & Hansen, H. (2008). Opioid Pharmacology. Pain Physician, 11(2 suppl), S133-53.
    Waldhoer, M., Bartlett, S. E., & Whistler, J. L. (2004). Opioid receptors. Annual Review of Biochemistry, 73, 953-990.
    Wilson, K., & Mottram, P. (2004). A comparison of side effects of selective serotonin reuptake inhibitors and tricyclic antidepressants in older depressed patients: a meta-analysis. International Journal of Geriatric Psychiatry, 19(8), 754-762.
    Xu, H., Richardson J. S., & Li, X. M. (2003). Dose-related effects of chronic antidepressants on neuroprotective proteins BDNF, Bcl-2 and Cu/Zn-SOD in rat hippocampus. Neuropsychopharmacology, 28(1), 53-62.
    Zhang, H., Torregrossa, M. M., Jutkiewicz, E. M., Shi, Y. G., Rice, K.C., Woods, J. H., Watson, S. J., & Ko, M. C. H. (2006). Endogenous opioids upregulatebrain-derived neurotrophic factor mRNA through delta- and muopioidreceptors independent of antidepressant-like effects. The European Journal of Neuroscience, 23(4), 984–994.
    Zhang, H., Shi, Y. G., Woods, J. H., Watson, S. J., & Ko, M. C. (2007). Central kappa-opioid receptor-mediated antidepressant-like effects of nor-Binaltorphimine: behavioral and BDNF mRNA expression studies. European Journal of Pharmacology, 570(1-3), 89-96.
    Zobel, A. W., Nickel, T., Kunzel, H. E., Ackl, N., Sonntag, A., Ising, M., & Holsboer, F. (2000). Effects of the high-affinity corticotrophin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. Journal of Psychiatric Research, 34(3), 171-181.
    Description: 碩士
    國立政治大學
    心理學研究所
    96752003
    98
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0096752003
    Data Type: thesis
    Appears in Collections:[心理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    200301.pdf941KbAdobe PDF2789View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback