English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 91913/122132 (75%)
Visitors : 25837464      Online Users : 244
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 企業管理學系 > 學位論文 >  Item 140.119/49535
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/49535


    Title: 結合TAM與TPB模型探討虛擬網站對醫療科技之推廣效果
    Authors: 官千羽
    Kuan, Lianne
    Contributors: 洪叔民
    官千羽
    Kuan, Lianne
    Keywords: 科技接受模型
    計畫行為理論
    創新擴散
    Date: 2009
    Issue Date: 2010-12-08 13:19:11 (UTC+8)
    Abstract: 本研究結合科技接受模型與計畫行為理論,並加入創新擴散理論中的個人創新特質與相容性,來探討影響網路使用者對於使用醫療網站之行為意願的要素,並以推廣的角度進一步探討網站使用意願與醫療科技採納意願間的強度關連。而由於口腔雷射為台灣地區甫引進之醫療科技,其並首先嘗試透過非營利組織—口腔雷射牙醫學會來建置新型態之資訊網站,試圖以整合模式針對口腔雷射進行全面性的推廣;因此本研究將以口腔雷射牙醫學會網站做為個案研究對象,進而提出針對網站本身以及相關推廣策略的後續建議。
    因此,本研究主要利用問卷調查方式來衡量個人創新特質、資訊品質、認知有用性、認知易用性、信任、相容性與認知行為控制的構面,並探討前述構面分別對於面對網站之態度、行為意願以及對口腔雷射之採納意願的影響。在此同時亦透過性別與個人平均月收入這兩項調節變數來探討族群特性差異對於牙醫學會網站及口腔雷射使用意願間因果關係之影響。本研究主要以有接觸過牙醫學會網站之使用者為研究對象,在針對牙醫學會成員及網站使用者進行訪談後,即開始以學者文獻為背景設技研究架構,將問卷連結放置在牙醫學會網站中。在經一個月之收集後,共計回收444份有效問卷,並以線性結構模式(LISREL)進行分析。
    研究結果發現,個人創新特質與資訊品質分別對網站的認知易用性與有用性有正向影響,而認知易用性與相容性除了會影響認知有用性外,也與認知有用性及信任共同影響民眾對網站的態度。態度與認知行為控制則將皆正向影響民眾對於網站的使用意願;最後,網站的使用意願與口腔雷射的採納意願間亦具有正向之關係,然其關聯強度會因性別之差異而有所不同。而在檢驗出上述結果後,本研究遂針對影響民眾認知之因素提出相關的網站改善建議,希望能夠在推廣方面收得更好的成效,並在日後將此類推廣模式延展到其他領域之醫療科技中,以供類似的醫療單位做為日後擴散創新醫療知識與科技的指標。
    Reference: 一、英文部分:
    Ajzen, I. & Fishbein , M. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Addison-Wesley, Reading, MA.
    Ajzen, I. & Fishbein , M. (1980) Understanding attitudes and predicting social behavior, Prentice-Hall, Englewood Cliffs, NJ.
    Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. Springer, Verlag, New York.
    Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211.
    Bandura, A. (1977). Self-efficacy toward a unifying theory 0f behavioral change. Psychological Review, 84(2), 91-125.
    Bhatti, T. (2007). Exploring factors influencing the adoption of mobile commerce. Journal of Internet Banking and Commerce. 12(3), 128-141.
    Bosnjak, M., Overmeier, D. & Tuten, T. L. (2006). Predicting and explaining the propensity to bid in online auctions: A comparison of two action-theoretical model. Journal of Consumer Behaviour, 5(4), 102-116.
    Chen, J. V., Yen, D. C. & Chen, K. (2009). The acceptance and diffusion of the innovative smart phone use: A case study of a delivery service company in logistics. Information & Management, 46(4) 241-248.
    Chen, L. D. & Tan, J. (2004). Technology adaptation in E-commerce: Key determinants of virtual stores acceptance. European Management Journal, 22(1), 74-86.
    Chew, F., Grant, W. & Tote, R. (2004). Doctors on-line: Using diffusion of innovations theory to understanding internet use. Medical Informatics, 36(9), 645-650.
    Ciganek, A. P., Mao, E. & Srite, M. (2008). Organizational culture for knowledge management systems: A study of corporate users. International Journal of Knowledge Management, 4(1), 1-16.
    Ciou, J. S. Droge, C. & Hanvanich, S. (2002). Does customer knowledge affect how loyalty is formed? Journal of Service Research, 5(2), 113-124.
    Cynthia, K. Riemenschneider, C. K., Harrison, D. A. & Mykytyn , P. P. (2003). Understanding it adoption decisions in small business: Integrating current theories. Information & Management, 40(4), 269-285.
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technologies, MIS Quarterly, 13(3), 319-314.
    Davis, F. D. (1993). User acceptance of information technology: System characteristics, user perceptions, and behavioral impacts. International Journal of Man Machine Studies, 38(3), 475-487.
    Davis, F. D., Bagozzi, R. & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003.
    Fitch, J. L. & Ravlin, E. C. (2005). Willpower and perceived behavioral control: Influences on the intention-behavior relationship and post-behavior attributions. Social Behavior and Personality, 33(2), 105-124.
    Gardner, R. E. & Hausenblas, H. A. (2005). Exercise and diet determinants of overweight women participating in an exercise and diet program: A prospective examination of the theory of planned behavior. Women & Health, 42(4), 37-46.
    Gillenson, M. L., Chen, L. D. & Sherrell, D. L. (2002). Enticing online consumers: An extended technology acceptance perspective. Information & Management, 39(8), 705-719.
    He, D., Lu,Y. & Zhou, D. (2008). Empirical study of consumers’ purchase intentions in C2C electronic commerce. Tsinghua Science and Technology, 13(3), 287-292.
    Hewitt, B. (2009). Using hybrid technology acceptance model to explore how security measures affect the adoption of electronic health record systems. Americas Conference on Information Systems, 5th.
    Hu, P.J., Chau, P.Y.K. , Sheng, L. O.R. & Tam, Y. K. (1999). Examining the technology acceptance model using physician acceptance of telemedicine technology. Journal of Management Information Systems, 16(2), 91-112.
    Igbaria, M., Zinatelli, N., Cragg, P. & Cavaye, A. (1997). Personal computing acceptance factors in small firms: A structural equation model. MIS Quarterly, 21(3), 279-302.
    Jackson, J. D., Yi, M. Y., Park, J. S. & Probst, J. C. (2006). Understanding information technology acceptance by individual professionals: Toward and integrative view. Information & Management, 43(3), 350-363.
    Jan, C. J. & Lee, M. C. (2009). Exploring consumers’ initial intention and continuance intention to use online auctions: An extension of the expectation-confirmation model. ICIM2009第二十屆國際資訊管理學術研討會.
    Jones, L. W., Guill, B., Keir, S. T. & Carter, K. (2007). Using the theory of planned behavior to understand the determinants of exercise intention in patients diagnosed with primary brain cancer. Psycho-Oncology, 16(3), 232-245.
    Jung, M. L. (2008). From health to E-health: Understanding citizens’ acceptance of online health care. Doctoral Thesis from Department of Business administration and Social Sciences Division of Industrial Marketing, E-commerce and Logistics.
    Khalifa, M. & Shen, K. N. (2008). Explaining the adoption of transactional B2C mobile commerce. Journal of Enterprise Information Management, 21(2), 110-124.
    Lee, M. C. (2008). Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8(3), 130-141
    Legris, P., Ingham, J. & Collerette, P. (2003). Why do people use information technology ? A critical review of the technology acceptance model. Information & Management, 40(3), 191-204.
    Lin, H. F. (2006). Understanding behavioral intention to participate in virtual communities. CyberPsychology & Behavior, 9(5), 15-24.
    Mathieson, K. (1991). Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173-191.
    Bosnjak, M., Obermeier, D. & Tuten, T. L. (2006). Predicting and explaining the propensity to bid in online auctions: A comparison of two action-theoretical model. Journal of Consumer Behaviour, 5(2), 102-116
    Moon, J., Park, J., Jung, G. H. & Choe, Y. C. (2010). The impact of IT use on migration intentions in rural communities. Technological Forecasting and Social Change.
    Moore, G. C. & Benbasat (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192-222.
    Nijhof, N., Hoeven, C. L. & Jong, M. D. T. (2008). Determinants of use of a diabetes risk-screening test. Community Health, 33(8), 313-317.
    Pavlou, P. A. & Fygenson, M. (2006). Understanding and predicting electronic commerce adoption : An extension of the theory of planned behavior. MIS Quarterly, 30(1), 115-143.
    Pelling, E. L., Sc., B. B. & White, K. M. (2009). The theory of planned behavior applied to young people’s use of social networking web sites. CyberPsychology & Behavior, 12(6), 135-142.
    Quaddus, M., Xu, J. & Hoque, Z. (2005). Factors of adoption on online auction : A china study. ICEC.
    Robert, W. Fisher, S. (2004). Diffusion of innovation theory for clinical change. MJA, 180(2), 55-57.
    Rogers, E. M. (1995). Diffusion of innovations. The Free Press, New York.
    Schomerus, G., Matschinger, H. & Angermeyers , M. C. (2009). Attitudes that determine willingness to seek psychiatric help for depression: A representative population survey applying the theory of planned behaviour. Psychological Medicine, 39(11), 1855-1865.
    Seiders, K., Voss, G. B., Grewal, D. & Godfrey, A. L. (2005). Do satisfied customers buy more? Examining moderating influences in a retailing context. Journal of Marketing, 69(4), 26-43
    Slyke, V., Ilie P., Lou & Stafford, J. (2007). Perceived critical mass and the adoption of a communication technology. European Journal of Information Systems, 16(3), 270-283.
    Taylor, S. & Todd, P. (1992). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144-176.
    Taylor, S. & Todd, P. (1995). Assessing IT usage: The role of prior experience. MIS Quarterly, 19(4), 561-570.
    Tung, F. C. & Chang, S. C. (2008). Nursing students’ behavioral intention to use online courses: A questionnaire survey. International Journal of Nursing Studies, 45(18), 1299-1309.
    Tung, F. C., Chang, S. C. & Chou, C. M. (2008). An extension of trust and TAM model with IDT in the adoption of the electronic logistics information system in HIS in the medical industry. International Journal of Medical Informatics, 77(5), 324-335.
    Tung, Lee & Chen (2009). An extension of financial cost and TAM model with IDT for exploring users’ behavioral intentions to use the CRM information system. Society for Personality Research, 37(5), 621-626.
    Venkatesh, V. & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Sciences, 46(2), 186-204.
    Venkatesh, V. & Morris, M. G. (2000). Why do not men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behaviors. MIS Quarterly, 24(1), 115-139.
    Venkatesh, V. & Morris, M. G., Davis, G.B. & Davis, F.D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
    Wu, I. L. &Wu, K. W. (2005). A hybrid technology acceptance approach for exploring E-CRM adoption in organizations. Behaviour & Information Technology, 24(4), 303-316.
    Wu, J. H., Shen, W. S., Lin, L. M., Greenes, R. & Bates, D. W. (2008). Testing the technology acceptance model for evaluating healthcare professionals’ intention to use and adverse event reporting system. International Journal for Quality in Health Care, 20(2), 123-129.
    Wu, J. H., Wang, S. C. & Lin, L. M. (2007). Mobile computing acceptance factors in the healthcare industry: A structural equation model. International Journal of Medical Informatics, 76(1) 66-77.
    Yoo, E. Y., Robbins, L. S. (2007). Understanding middle-aged women’s health information seeking on the web: A theoretical approach. Journal of the American Society for Information Science and Technology, 59(4), 577-590.
    Zhang, S., Zhao, J. & Tan, W. (2008). Extending TAM for online learning systems: An intrinsic motivation perspective. Tsinghua Science and Technology, 13(3), 312-317.
    二、中文部分:
    吳明隆 (2007). SPSS操作與應用:問卷統計分析實務, 臺北;五南出版社
    邱皓政 (2006). 結構方程模式,臺北:雙葉書廊有限公司.
    Description: 碩士
    國立政治大學
    企業管理研究所
    97355051
    98
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0097355051
    Data Type: thesis
    Appears in Collections:[企業管理學系] 學位論文

    Files in This Item:

    File SizeFormat
    505101.pdf1041KbAdobe PDF2464View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback