English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88837/118541 (75%)
Visitors : 23547495      Online Users : 432
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/49592
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/49592

    Title: 電腦模擬與隨機方法在人口推估上的應用
    An Empirical Study of Simulation and Stochastic Methods on the Population Projections
    Authors: 郭孟坤
    Contributors: 余清祥
    Yue,Jack C.
    Keywords: 人口推估
    Date: 2006
    Issue Date: 2010-12-08 14:40:37 (UTC+8)
    Abstract: 人口推估(Population Projection)涉及國家的政策及規劃,精確的結果可協助國家適時制訂政策,提高國民福祉。臺灣現在使用的方法為人口變動要素合成法(The Cohort Component Method),可算是情境推估(Scenario Forecast)的一種,其起源可追溯至1920年代(Whelpton, 1928),參酌專家意見之後,使用高、中、低三種推計來描述其變動範圍。除了情境推估外,近年在人口變動要素合成方法上發展出的新方法大致可以分成三種:一為隨機推估(Stochastic Forecast Method)、一為模擬情境(Random Scenario Method)、一為推估誤差(ex post Method),美國及聯合國已經不單單依賴專家提供的傳統高、中、低推計,轉而使用這些新的推估方法。
    由於近年來生育率快速降低、平均餘命延長以及外籍新娘增多等因素,大為提高人口推估的難度,因此本文將機率的概念併入人口推估中,以預測區間(Prediction Interval)來捕捉人口各項特性的可能變動範圍。除了回顧幾種在人口變動要素合成法中發展出的隨機推估方法及合併專家意見的方針外,也使用區塊拔靴法(Block Bootstrap)電腦模擬,進行臺灣、美國、日本、法國四個國家的人口推估。另外,本文也採用以Stoto(1983)提出的預測誤差估計,評估區塊拔靴法和人力規劃處推估結果之異同,以提供使用專家意見與隨機方法的參考。最後則是比較臺灣以北中南東小區域推估和臺灣整體的推估結果,並合併專家意見進行臺灣地區人口推估。
    Reference: 中文部分
    中華民國內政部統計資訊網,http://www.moi.gov.tw/W3/stat/ 。
    內政部(1949 ~ 2005),中華民國台閩地區人口統計,內政部編印。
    何正羽(2006), “高齡人口Gompertz死亡率推估模型的建構與應用”, 東吳大學商用數學系碩士論文。
    余清祥與藍銘偉(2003),“台灣地區生育率模型之研究”, 人口學刊, Vol. 27, 105-131。
    黃意萍與余清祥(2002),“台灣地區生育率模式的推估研究”, 人口學刊, Vol. 25, 145-171。
    賴思帆與余清祥(2006),“台灣與各國生育率模型之實證與模擬比較”, 人口學刊, Vol. 33, 33-59。
    Alho, J.M. (1990b), “Stochastic Methods in Population Forecasting”. Int. J. Forecasting, Vol.6, 521-530.
    Alho, J.M. (2002), “The Population of Finland in 2050 and Beyond”, The Research Institute of the Finnish Economy, Discussion Papers, No.826.
    Alho, J., Alders, M., Cruijsen, H., Keliman, N., Nikander, T. and Pham. D.Q.(2006),“New Forecast: Population Decline Postponed in Europe”, Statistical Journal of the United Nations ECE, Vol.23, 1-10.
    Alho, J.M. and Spencer, B.D. (1997), “The Practical Specification of the Expected Error of Population Forecasts”, Journal of Official Statistics, Vol.13(3), 203-225.
    Alho, J.M. and Spencer, B.D. (2005), Statistical Demography and Forecasting, Springer, New York.
    Armstrong, J.S. (2001), Principles of Forecasting: A Handbook for Researchers and Practitioners, Kluwer Academic Publishers, Boston.
    Bongarrts, J. and G. Feeney(1998), “On the Quantum and Tempo of Fertility”, Population And Development Review, Vol.24(2), 271-291.
    Bühlmann, P. (2002), “Bootstraps for Time Series”, Statistical Science, Vol. 17(1), 52-72.
    Chatfield, C.(2000), Time-Series Forecasting, Chapman & Hall/CRC, New York.
    Denton, F.T., Feaver, C.H. and Spencer, B.G. (2005), “Time Series Analysis and Stochastic Forecasting: An Econometric Study of Mortality and Life Expectancy”, Journal of Population Economics, Vol.18, 203-227.
    Efron, B. (1979), “Bootstrap Method: Another Look at Jackknife”, Ann Statist, Vol. 7, 1-26.
    Hall, P. (1985), “Resampling a Coverage Pattern”, Stochastic Processes Applications, Vol. 20, 231-246.
    Human Mortality Database, http://www.mortality.org/.
    Keilman, N., Pham, D.Q., and Hetland, A. (2002), “Why Population Forecasts should be Probabilistic - Illustrated by the Case of Norway”, Demographic Research, Vol. 6, 410-454.
    Künsch, H.R. (1989), “The Jackknife and the Bootstrap for General Stationary Observations”, The Annuals of Statistics, Vol. 17, 1217-1261.
    Lee R.D. (1974), “Forecasting Births in Post-Transition Populations: Stochastic Renewal with Serially Correlated Fertility”, Journal of American Statistical Association, Vol.69, 607-617.
    Lee, R.D. (1998), “Probabilistic Approaches to Population Forecasting“, Population and Development Review, Vol. 24, Supplement : Frontiers of Population Forecasting. 156-190.
    Lee, R.D. and Carter, L (1992), “Modeling and Forecasting U. S. Mortality”, Journal of the American Statistical Association, Vol. 87, 659-671.
    Lee, R.D. and Tuljapurkar, S.(1994), “Stochastic Population Forecasts for the United States : Beyond High, Medium and Low “, Journal of the American Statistical Association, Vol. 89, 1175-1189.
    Lee, R.D. and Miller, T. (2001), “Estimating the Performance of the Lee-Carter Method for Forecasting Mortality”, Demography, Vol.38, 537-549.
    Long, J.F. and Hollmann, F.W. (2004), “Developing Official Stochastic Population Forecasts at the US Census Bureau”, International Statistical Review, Vol. 72(2), 201-208.
    Lutz, W., Sanderson, W. and Scherbov, S. (1996), “Probabilistic Population Projections Based on Expert Opinion”, The Future Population of the World. What Can We Assume Today? ,Ed. W. Lutz, 397-428, Revised Edition, London, Earthscan.
    Lutz, W., Saariluoma P., Sanderson, W. and Scherbov, S. (2000), “New Developments in the Methodology of Expert- and Argument-Based Probabilistic Forecasting” IIASA Interim Report, IR-00-020.
    Lutz, W., Sanderson, W. and Scherbov, S. (2001), “The End of World Population Growth“, Nature, Vol. 412, 543-545.
    Lutz, W., Sanderson, W. and Scherbov, S. (2004), “The End of World Population Growth“, The End of World Population Growth in the 21st Century, 17-83, London, Earthscan.
    Lutz, W. and Scherbov, S. (1998), “An Expert-Based Framework for Probabilistic National Population Projections: The Example of Austria”, European Journal of Population, Vol. 14, 1-17.
    Mammen, E. and Nandi, S. (2004), “Bootstrap and Resampling”, Handbook of Computational Statistics Concepts and Methods, Ed. Gentle, J. E., Härdle, W. and Mori, Y., 468-495, Springer, Heidelberg.
    O'Neill, B.C., Balk, D., Brickman, M., and Ezra, M. (2001), “A Guide to Global Population Projections”, Demographic Research, Vol. 4, 203-288.
    Politis, D.N. and Romano J.P. (1994), “The Stationary Bootstrap”, Journal of the American Statistical Association, Vol. 89, 1303-1313.
    Sanderson, W.C., Scherbov, O’Neill, B.C. and S., Lutz, W. (2004), “Conditional Probabilistic Population Forecasting”, International Statistical Review, Vol. 72(2), 157-166.
    Smith, S.K.(1997), “Further Thoughts on Simplicity and Complexity in Population Projection Models”, International Journal of Forecasting, Vol. 13, 557-565.
    Stoto, M.A. (1983), “The Accuracy of Population Projections”, J.A.S.A., Vol. 78 (381), 13-20.
    Tuljapurkar, S., Lee, R.D., and Li, Q. (2004), “Random Scenario Forecasts Versus Stochastic Forecasts”, International Statistical Review, Vol. 72(2), 185-199.
    Whelpton, P.K. (1928), “Population of the United States, 1925 to 1975”, American Journal of Sociology, Vol. 34, 253-270.
    Whelpton, P.K. (1954), “On Stationary Processes in the Plane”, Biometrika, Vol. 41, 434-449.
    Wilson, T. and Rees, P. (2005), “Recent Developments in Population Projection Methodology : A Review”, Population, Space and Place, Vol. 11, 337-360.
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0094354019
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    401901.pdf43KbAdobe PDF657View/Open
    401902.pdf201KbAdobe PDF633View/Open
    401903.pdf200KbAdobe PDF715View/Open
    401904.pdf360KbAdobe PDF753View/Open
    401905.pdf317KbAdobe PDF2235View/Open
    401906.pdf352KbAdobe PDF1414View/Open
    401907.pdf377KbAdobe PDF1681View/Open
    401908.pdf358KbAdobe PDF1237View/Open
    401909.pdf327KbAdobe PDF7566View/Open
    401910.pdf363KbAdobe PDF1551View/Open
    401911.pdf283KbAdobe PDF870View/Open
    401912.pdf291KbAdobe PDF812View/Open
    401913.pdf634KbAdobe PDF755View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback