English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 93218/123590 (75%)
Visitors : 27680594      Online Users : 604
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/51313
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/51313


    Title: 以矩陣分解法計算特別階段形機率分配並有多人服務之排隊模型
    A phase-type queueing model with multiple servers by matrix decomposition approaches
    Authors: 顏源亨
    Yen, Yuan Heng
    Contributors: 陸行
    Luh, Hsing
    顏源亨
    Yen, Yuan Heng
    Keywords: 階段形機率分配
    多重服務器
    穩定狀態機率
    Phase-type distribution
    multiple servers
    stationary probability
    Date: 2010
    Issue Date: 2011-10-05 14:39:41 (UTC+8)
    Abstract: 穩定狀態機率是讓我們了解各種排隊網路性能的基礎。在擬生死過程(Quasi-Birth-and-Death) Phase-type 分配中求得穩定狀態機率,通常是依賴排隊網路的結構。在這篇論文中,我們提出了一種計算方法-LU分解,可以求得在排隊網路中有多台服務器的穩定狀態機率。此計算方法提供了一種通用的方法,使得複雜的大矩陣變成小矩陣,並減低計算的複雜性。當需要計算一個複雜的大矩陣,這個成果變得更加重要。文末,我們提到了離開時間間隔,並用兩種方法 (Matlab 和 Promodel) 去計算期望值和變異數,我們發現兩種方法算出的數據相近,接著計算離開顧客的時間間隔相關係數。最後,我們提供數值實驗以計算不同服務器個數產生的離去過程和相關係數,用來說明我們的方法。
    Stationary probabilities are fundamental in response to various measures of performance in queueing networks. Solving stationary probabilities in Quasi-Birth-and-Death(QBD) with phase-type distribution normally are dependent on the structure of the queueing network. In this thesis, a new computing scheme is developed for attaining stationary probabilities in queueing networks with multiple servers. This scheme provides a general approach of consindering the
    complexity of computing algorithm. The result becomes more
    significant when a large matrix is involved in computation. After determining the stationary probability, we study the departure process and the moments of inter-departure times. We can obtain the moment of inter-departure times. We compute the moments of inter-departure times and the variance by applying two numerical methods (Matlab and Promodel). The lag-k correlation of inter-departure times is also introduced in the thesis. The proposed approach is proved theoretically and verifieded with illustrative examples.
    Reference: 1.Bitran, G.R., Dasu, S., Analysis of the Ph/Ph/1 queue.
    Operations Research, Vol. 42, No. 1, pp.158--174, 1994.
    2.Bodrog, L., Horvath, A., Telek, M.,Moment
    characterization of matrix exponential and Markovian
    arrival processes. Annals of operations Reseach, to
    appear, 2008.
    3.Chuan, Y.W., Luh, H., Solving a two-node closed queueing
    network by a new approach, International Journal of
    Information and Management Sciences, Vol. 16, No. 4, pp.
    49--62, 2004.
    4.Curry, G.L., Gautam, N., Characterizing the departure
    process from a two server Markovian queue: A non-renewal
    approach, Proceedings of the 2008 Winter Simulation
    Conference, pp. 2075--2082, 2008.
    5.El-Rayes, A., Kwiatkowska, M., Norman, G., Solving
    infinite stochastic process algebra model through martix-
    geometric methods, Proceedings of 7th Process Algebras
    and Performance Modelling Workshop (PAPM99), J. Hillston
    and M. Silva (Eds.), pp. 41--62, University of Zaragoza,
    1999.
    6.Gene H. Golub, Charles F. Van Loan, Matrix Computations,
    3rd Edition, The Johns Hopkins University Press, 1996.
    7.Latouche, G., Ramaswami, V., Introduction to Matrix
    Analytic Methods in Stochastic Modeling, ASA-SIAM Series
    on Statistics and Applied Probability (SIAM), Society for
    Industrial Mathematics, Philadelphia, PA, 2000.
    8.Neuts, M.F., Matrix-Geometric Solutions in Stochastic
    Models, The John Hopkins University Press, 1981.
    9.Roger, A.H., Charles, R.J., Matrix analysis, 4th
    Edition,The Press Syndicate of the University of
    Cambrige, 1990.
    10.Sikdar, K., Gupta, U.C., The queue length distributions
    in the finite buffer bulk-service $MAP/G/1$ queue with
    multple vacations, Sociedad de Estadistica e
    Investigacion Operativa, Vol. 13, No.1, pp. 75--103, 2005.
    11.Telek, M., Horvath, G., A minimal representation of
    Markov arrival processes and a moments matching method.
    Performance Evaluation, Vol. 64, pp. 1153--1168, 2007.
    12.Whitt, W. The queueing network analyzer, The Bell system
    Technical Journal, Vol. 62, No. 9, pp. 2779--2814, 1983.
    13.The MathWorks Company,
    MATLAB The Language of Technical Computing: Using
    MALTAB, Version 6, 2002.
    14.Promodel Corp., Promodel User Guide, Promodel Corp.,
    2001.
    Description: 碩士
    國立政治大學
    應用數學系數學教學碩士在職專班
    97972004
    99
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0097972004
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    200401.pdf1040KbAdobe PDF601View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback