English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88645/118187 (75%)
Visitors : 23497609      Online Users : 707
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/53110


    Title: 委託單驅動市場之委託單切割對長期記憶性的影響
    Other Titles: The Impact of Order-Splitting on Long-Memory in an Order-Driven Market
    Authors: 山本竜市
    Contributors: 國立政治大學國際貿易學系
    行政院國家科學委員會
    Keywords: 長期記憶性;委託單切割;市場微結構
    Long-memory;order-splitting;microstructure;order flow;agent-based
    Date: 2008
    Issue Date: 2012-06-22 09:48:54 (UTC+8)
    Abstract: 此研究專題是與美國布蘭迪斯大學Blake LeBaron教授共同研究,主要在探討委託單驅動市場中,交易員委託單分割行為與長期記憶性的關聯。例如:交易量、波動性、委託單訊號的長期記憶性(但報酬無持續性)。計畫的第一部份,主要在研究NYSE TAQ (New York Stock Exchange Trades and Quotes 資料庫中有關中長期記憶性的統計實例。相較於利用日頻率資料的研究,使用極高頻率資料來做長期記憶性的實證研究是較新的研究方向,因此,在將這些現象理論化之前,提出一些實證資料是很值得的。接著,將建立一個一般自動化委託單切割系統的理論模型,並檢視委託單切割對於引起長期記憶性的重要性。LeBaron and Yamamoto (2007) 證明股票交易員的模仿行為種類是引起長期記憶性的關鍵,故我們將比較這些結果並證明哪個因素(模仿與委託單切割)的重要性較高,以證明這些因素與實證現象的關聯性。 因此,此研究計畫預計需要兩年以上的時間來完成,主要原因包括: 1) 一般而言,整理極高頻率資料會耗費大量的時間。 2) 如研究計畫表C012-2中所陳述,交易量與波動性的自我相關函數有季節性(交易量與波動性在開盤與收盤期間有較大的傾向)存在,故此研究要將季節性因素移除,以便分析長期記憶性。此次研究主題有所進展時,我們計劃在下列兩個研討會發表研究結果: 1) ESHIA/WEHIA 2008, 19th to 21st June 2008, Warsaw University of Technology, Warsaw, POLAND 2) Econophysics Colloquium 2008, August 29-30, Kiel, Germany.
    This is a research project with Professor Blake LeBaron at Brandeis University. This project asks how traders’ order splitting behavior is related to the long-memory properties in an order-driven market, i.e., long-memories in volume, volatility, and order signs (but yet, the market is informationally efficient in a sense that there is no persistence in returns). We first show a statistical example of the long-memory properties with our NYSE TAQ (New York Stock Exchange Trades and Quotes) dataset that National Chengchi University library has. Empirical research on long-memories with ultra-high frequency data is relatively new to those with daily frequency. So, we think that it would be worthwhile to provide some evidence on them before theorizing those phenomena. Then we set up a theoretical model on a simple automated order-splitting system, and examine how important order-splitting is to generate the long-memories. LeBaron and Yamamoto (2007) show that some form of imitative behavior of stock traders is key for generating the long-memories. We compare these results and show which factor (imitation and order-splitting) is more important and how these are related to those empirical phenomena. We estimate that this project takes more than two years to complete mainly because: 1) It normally takes extremely huge amount of time to clean such ultra-high frequency data. 2) As I describe the details in the proposal (a form C012-2), the autocorrelation functions for volume and volatility show hourly seasonality (volume and volatility tend to be higher around at the opening and closing sessions) so that we need to remove to analyze the long-memories. I am applying to NSC for two years’ research funds this time. As we make some progress on this research, we plan to present our results at the following two conferences: 1) ESHIA/WEHIA 2008, 19th to 21st June 2008, Warsaw University of Technology, Warsaw, POLAND 2) Econophysics Colloquium 2008, August 29-30, Kiel, Germany.
    Relation: 基礎研究
    學術補助
    研究期間:9708~ 9807
    研究經費:370仟元
    Data Type: report
    Appears in Collections:[國際經營與貿易學系 ] 國科會研究計畫

    Files in This Item:

    File SizeFormat
    972416H001.pdf436KbAdobe PDF492View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback