English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 89686/119522 (75%)
Visitors : 23949569      Online Users : 597
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/53416


    Title: 貝氏方法在網路評分資料之應用(II)
    Other Titles: Bayesian Method for Internet Rating Data
    Authors: 翁久幸
    Contributors: 國立政治大學統計學系
    行政院國家科學委員會
    Keywords: 統計;貝氏方法;網路評分資料
    Date: 2012
    Issue Date: 2012-08-30 09:59:40 (UTC+8)
    Abstract: 網路提供給消費者大量資訊. 網路使用者在網路上對於各種產品,如電影,音樂,餐廳, 商 品等給予的評分,常常構成相當大的網路資料. 關於這類評分一分到五分或一分到十分 的資料,目前網路上常見的呈現方式是以各產品所獲得的平均評分以圖表表示(例如以 五個星號代表五分). 然而,因為沒有考慮到評分者與評分者之間的差異,這樣簡單的平 均分數可能不客觀公平. Ho and Quinn (2008) 提出一個貝氏模型並以MCMC方法估計其中參數,該模型有 納入評分者與評分者之間的差異. Ho and Quinn (2008)並且以網路資料舉例說明 他們方法比平均分數能夠更合理的解釋評分資料. 可是, 該二位作者於文章結尾也指出, 當資料量很大,甚至於當新資料進來而需要重新估計模型參數, 以MCMC方法來計算 於實際應用上是不可行的. 本研究計畫的目的就是提出一個有效可行的方法來解決這 個問題.
    The internet has offered consumers with a vast amount of information. One growing area of such information is ratings by internet users on various kinds of products such as movies, music, restaurants, commodities, etc. Consider rating data in which each product was rated on a scale of 1 to 5 by internet users. The current displays of each product's preference are typically based on “average rating,” but it is well known that the average rating method ignores systematic differences across raters. Ho and Quinn (2008) proposed a Bayesian model and Markov chain Monte Carlo (MCMC) methods to take into account systematic differences across raters, and at the same time incorporate statistical uncertainty in the ratings. However, to work efficiently on an industrial scale and to adjust the parameters in real-time as new rating arrive, the MCMC methods may not be computationally feasible. The current project aims to provide a solution to this problem by using efficient approximation algorithm.
    Relation: 應用研究
    學術補助
    研究期間:10108~ 10207
    研究經費:694仟元
    Data Type: report
    Appears in Collections:[統計學系] 國科會研究計畫

    Files in This Item:

    File Description SizeFormat
    100-2118-M004-001-MY2.pdf542KbAdobe PDF295View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback