English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 89683/119504 (75%)
Visitors : 23940844      Online Users : 120
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/54301
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/54301


    Title: R軟體套件";rBeta2009";之評估及應用
    Evaluation and Applications of the Package ";rBeta2009"
    Authors: 劉世璿
    Liu, Shih Hsuan
    Contributors: 洪英超
    Hung, Ying Chao
    劉世璿
    Liu, Shih Hsuan
    Keywords: 狄氏分配
    貝他分配
    有效性
    精確性
    隨機性
    beta variates
    Dirichlet random vectors
    efficiency
    accuracy
    randomness
    Date: 2011
    Issue Date: 2012-10-30 10:41:01 (UTC+8)
    Abstract: 本論文主要是介紹並評估一個R的軟體套件叫做"rBeta2009"。此套件是由Cheng et al. (2012) [8] 所設計,其目的是用來產生貝他分配(Beta Distribution)及狄氏分配(Dirichlet Distribution)的亂數。本論文特別針對此套件之(i)有效性(effiniency)、(ii)精確性(accuracy)及(iii)隨機性(randomness)進行評估,並與現有的R套件作比較。此外,本論文也介紹如何應用此套件來產生(i)反貝他分配(Inverted Beta Distribution)、(ii)反狄氏分配(Inverted Dirichlet Distribution)、(iii)Liouville分配及(iv)凸面區域上的均勻分配之亂數。
    A package in R called "rBeta2009", originally designed by Cheng et al. (2012) [6], was introduced and evaluated in this thesis. The purpose of the package is generating beta random numbers and Dirichlet random vectors. In this paper, we not only evaluated (i) the efficiency, (ii) the accuracy and (iii) the randomness, but also compare it with other R packages currently in use. In addition, it was also scrutinized in this thesis how to generate (i) inverted beta random numbers, (ii) inverted Dirichlet random vectors, (iii) Liouville random vectors, and (iv) uniform random vectors over convex polyhedron by using the same package.
    Reference: [1] A.C. Atkinson and Whittaker (1976). A Switching Algorithm for the Generation of Beta Random Variables With at Least One Parameter Less Than One. Proceedings of the Royal Society of London, Series A, 139, pp. 462-467.
    [2] K. Alam, R. Abernathy and C.L.Williams (1993). Multivariate Goodness-of-Fit Tests Based on Statistically Equivalent Blocks. Communication in Statistics, Theory Methods 22, pp. 1515–1533.
    [3] A.G. Ashraf and S. Tamás (2009). On Numerical Calculation of Probabilities According to Dirichlet Distribution. Annals of Operations Research, 177, pp. 185–200.
    [4] T.W. Anderson (1966). Some Nonparametric Procedures Based on Statistically Equivalent Blocks. Proceedings of International Symposium on Multivariate Analysis. P.R. Krishnaiah ed., Academic Press Inc., New York, pp. 5–27.
    [5] T. Bdiri and N. Bouguila (2011). Learning Inverted Dirichlet Mixtures for Positive Data Clustering. Neural Information Processing, ICONIP 2011, Part II, LNCS 7063, pp. 71–78. Springer, Heidelberg.
    [6] T. Bdiri and N. Bouguila (2011). Learning Inverted Dirichlet Mixtures for Positive Data Clustering. Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, RSFDGrC 2011. LNCS, 6743, pp. 265–272. Springer, Heidelberg.
    [7] R.C.H. Cheng (1978). Generating Beta Variates with Nonintegral Shape Parameters. Communications of the Association for Computing Machinery, 21, pp. 317-322.
    [8] C.W. Cheng, Y.C. Hung and N. Balakrishnan (2012). Package "rBeta2009". URL http://cran.r-project.org/package=rBeta2009.
    [9] R.V. Foutz (1980). A test for goodness of fit based on empirical probability measure. The Annals of Statistics, 8, pp. 989–1001.
    [10] K.T. Fang, G.L. Tian and M.Y. Xie. (1997). Uniform Distribution on Convex Polyhedron and Its Applications. Department of Mathematics, Hong Kong Batist University, No. 149.
    [11] D.A.S. Fraser (1957). Nonparametric Methods in Statistics, JohnWiley & Sons, NewYork.
    [12] T. Hahn (2005). CUBA—a library for multidimensional numerical integration. Computer Physics Communications, 168, pp. 78–95.
    [13] Y.C. Hung, N. Balakrishnan and Y.T. Lin (2009). Evaluation of Beta Generation Algorithms. Communications in Statistics - Simulation and Computation, 38, pp. 750-770.
    [14] Y.C. Hung, N. Balakrishnan and C.W. Cheng (2011). Evaluation of Algorithms for Generating Dirichlet Random Vectors. Journal of Statistical Computation and Simulation, 81, pp. 445-459.
    [15] J.R.M. Hosking (1981). Fractional Differencing. Biometrica, Vol. 68, No. 1981, pp. 165-176.
    [16] J.R.M. Hosking (1980). The Multivariate Portmanteau Statistic. Journal of American Statistical Association, 75, pp. 602-608.
    [17] B. Jarle and O.E. Terje (1991). An adaptive algorithm for the approximate calculation of multiple integrals. ACM Transactions on Mathematical Software, Vol. 17, No. 4, pp. 437-451.
    [18] B. Jarle and O.E. Terje (1991). Algorithm 698: DCUHRE: An adaptive algorithm for the approximate calculation of multiple integrals. ACM Transactions on Mathematical Software, Vol. 17, No. 4, pp. 452-456.
    [19] M.D. Jöhnk (1964). Erzeugung von betaverteilten und gammaverteilten zuffallszahlen. Metrika, 8, pp. 5-15.
    [20] D.P. Kennedy (1988). A note on stochastic search methods for global optimization. Advances in Applied Probability, 20, pp. 476-478.
    [21] K. Lange (2005). Applications of the Dirichlet distribution to forensic match probabilities, Genetica , 96, pp. 107–117.
    [22] G. Laval, M. SanCristobal and C. Chevalet (2003). Maximum-likelihood and Markov chain Monte Carlo approaches to estimate inbreeding and effective size from allele frequency changes. Genetics, 164 (3), pp. 1189-1204.
    [23] J. Liouville (1839). Note sur quelquess integrals définies. Journal de Mathématiques Pures et Appliquées, 4, pp. 225-235.
    [24] G.M. Ljung and G.E.P. Box (1978). On a Measure of Lack of Fit in Time Series Models. Biometrika, 65, pp. 297-303.
    [25] R.E. Madsen, D. Kauchak and C. Elkan (2005). Modeling Word Burstiness Using the Dirichlet Distribution. Proceeding of the 22nd International Conference on Machine Learning, pp. 545-552.
    [26] A.J. McNeila and J. Nešlehová (2010).From Archimedean to Liouville copulas. Journal of Multivariate Analysis, 101, 8, pp. 1772-1790.
    [27] J.B. McDonald and R.J. Butler (1987). Some generalized mixture distributions with an application to unemployment duration. The Review of Economics and Statistics, 69, pp. 232–240.
    [28] D.G. Rameshwar and St. P.R. Donald (1987). Multivariate Liouville distribution. Journal of Multivariate Analysis, 23, pp. 233-256.
    [29] R.J. Serfling (1980). Approximation Theorems for Mathematical Statistics. JohnWiley & Sons, NewYork.
    [30] B.W. Schmeiser and A.J.G. Babu (1980). Beta Variate Generation via Exponential Majorizing Functions. Operations Research, 28,pp. 917-926.
    [31] K. Sjölander, K. Karplus, M. Brown, R. Hughey, A. Krogh, I. S. Mian and D. Haussler (1996). Dirichlet mixtures: A method for Improving Detection of Weak but Significant Protein Sequence Homology. The Computer Application in Bioscience, 12, pp. 327-345.
    [32] H. Sakasegawa (1983). Stratified rejection and squeeze method for generating beta random numbers. Annals of the Institute Statistical Mathematics, 35,pp. 291-302.
    [33] H. Sahai and R.L. Anderson (1973). Confidence regions for variance ratios of the random models for balanced data. Journal of the American Statistical Association, 68, 344, pp. 951-952.
    [34] J.W. Tukey (1947). Non-parametric estimation II. Statistically Equivalent Blocks and tolerance regions – the continuous case. The Annals of Mathematical Statistics, 18, pp. 529–539.
    [35] G.G. Tiao and I. Guttman (1965a). The inverted Dirichlet distribution with applications. Journal of the American Statistical Association, 60, pp. 793–805.
    [36] G.G. Tiao and I. Guttman (1965b). The inverted Dirichlet distribution with applications. Journal of the American Statistical Association, 60, pp. 1251-1252.
    [37] G.R. Warnes (2010). Various R programming tools. URL http://cran.r-project.org/web/packages/gtools/gtools.pdf.
    [38] E.P. Xing, M.I. Jordan, R.M. Karp and S. Russell (2002). A Hierarchical Bayesian Markovian Model for Motifs in Biopolymer Sequences. Proceedings of Advances in National Information Processing Systems, pp. 1489-1496.
    [39] H. Zechner and E. Stadlober (1993). Generating beta variates via patchwork rejection. Computing, 50,pp. 1-18.
    Description: 碩士
    國立政治大學
    統計研究所
    99354027
    100
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0099354027
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    402701.pdf1329KbAdobe PDF1476View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback