English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 94524/125052 (76%)
Visitors : 29729767      Online Users : 291
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/54549
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/54549

    Title: 在序列相關因子模型下探討動態模型化投資組合信用風險
    Dynamic modeling portfolio credit risk under serially dependent factor model
    Authors: 游智惇
    Yu, Chih Tun
    Contributors: 劉惠美
    Yu, Chih Tun
    Keywords: 序列相關因子模型
    蒙地卡 羅期望最大法
    Serially dependent factor model
    Portfolio credit risk
    Bayesian inference
    Monte Carlo Expectation Maximization
    Monte Carlo maximum likelihood
    Date: 2011
    Issue Date: 2012-10-30 11:20:43 (UTC+8)
    Abstract: 獨立因子模型廣泛的應用在信用風險領域,此模型可用來估計經濟資本與投資組合的損失率分配。然而獨立因子模型假設因子獨立地服從同分配,因而可能會得到估計不精確的違約機率與資產相關係數。因此我們在本論文中提出序列相關因子模型來改進獨立因子模型的缺失,同時可以捕捉違約率的動態行為與授信戶間相關性。我們也分別從古典與貝氏的角度下估計序列相關因子模型。首先,我們在序列相關因子模型下利用貝氏的方法應用馬可夫鍊蒙地卡羅技巧估計違約機率與資產相關係數,使用標準普爾違約資料進行外樣本資料預測,能夠證明序列相關因子模型是比獨立因子模型合理。第二,蒙地卡羅期望最大法與蒙地卡羅最大概似法這兩種估計方法也使用在本篇論文。從模擬結果發現,若違約資料具有較大的序列相關與資產相關特性,蒙地卡羅最大概似法能夠配適的比蒙地卡羅期望最大法好。
    The independent factor model has been widely used in the credit risk field, and has been applied in estimating the economic capital allocations and loss rate distribution on a credit portfolio. However, this model assumes independent and identically distributed common factor which may produce inaccurate estimates of default probabilities and asset correlation. In this thesis, we address a serially dependent factor model (SDFM) to improve this phenomenon. This model can capture both dynamic behavior of default risk and dependence among individual obligors. We also address the estimation of the SDFM from both frequentist and Bayesian point of view. Firstly, we consider the Bayesian approach by applying Markov chain Monte Carlo (MCMC) techniques in estimating default probability and asset correlation under SDFM. The out-of-sample forecasting for S&P default data provide strong evidence to support that the SDFM is more reliable than the independent factor model. Secondly, we use two frequentist estimation methods to estimate the default probability and asset correlation under SDFM. One is Monte Carlo Expectation Maximization (MCEM) estimation method along with a Gibbs sampler and an acceptance method and the other is Monte Carlo maximum likelihood (MCML) estimation method with importance sampling techniques.
    Reference: Basel Committee on Banking Supervision. Basel II: international convergence of capital measurement and capital standards: A revised framework, Consultative Document, Bank for International Settlements, 2004.

    Basel Committee on Banking Supervision. Basel II: International convergence of capital measurement and capital standards: A revised framework-comprehensive version, Consultative Document, Bank for International Settlements, 2006.

    Bluhm, C., Overbeck, L., and Wagner, C., An Introduction to Credit Risk Modeling, Chapman & Hall, New York, 2002.

    Booth, J. G. and Hobert, J. P., Maximizing generalized linear mixed models likelihoods with an automated Monte Carlo EM algorithm, Journal of the Royal Statistical Society Series B, Vol.61, No.1, pp.265-285, 1999.

    Carter, C. K. and Kohn, R., On Gibbs sampling for state space models, Biometrika, Vol. 81. No.3, pp.541-553, 1994.

    Crouhy, M. G., Jarrow, R. A. and Turnbull, S. M., The subprime credit crisis of 2007, The Journal of Derivatives, Vol.16, No.1, pp.81-110, 2008.

    Czado, C. and Pflűger, C., Modeling dependencies between rating categories and their effects on prediction in a credit risk portfolio, Applied Stochastic Models in Business and Industry, Vol.24, No.3, pp.237-259, 2008.

    de Jong, P. and Shephard, N., The simulation smoother for time series models, Biometrika, Vol.82, No.2, pp.339-350, 1995.
    Dagpunar, J. S., Simulation and Monte Carlo - with Applications in Finance and MCMC, Wiley, New York, 2007.

    Dempster, A. P., Laird, N. M., and Rubin, D., Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society B, Vol.39, pp.1-38, 1997.

    Dwyer, D. W., The distribution of defaults and Bayesian model validation, Journal of Risk Model Validation, Vol.1, No.1, pp.23-53, 2007.

    Durbin, J. and Koopman, S. J., Monte Carlo maximum likelihood estimation for non-Gaussian state space models, Biometrika, Vol.84, No.3, pp.669-684, 1997.

    Durbin, J. and Koopman, S. J., A simple and efficient simulation smoother for state-space time series models, Biometrika, Vol.89, No.3, pp.603-616, 2002.

    Ebnöther, S. and Vanini, P., Credit portfolios: What defines risk horizons and risk measurement?, Journal of Banking & Finance, Vol.31, No.12, pp.3663-3679, 2007.

    Fruhwirth-Schnatter, S., Data augmentation and dynamic linear models, Journal of Time Series Analysis, Vol.15, No.2, pp.183-202, 1994.

    Gelfand, A. E. and Smith, A. F. M, Sampling based approaches to calculate marginal densities, Journal of American Statistical Association, Vol.85, pp.398-409,1990.

    Gelfand, A., Model determination using sampling-based methods, in: W. Gilks, S. Richardson, and D. Spiegelhalter, (eds.), Markov Chain Monte Carlo in Practice, Chapman & Hall, London, pp.145-161, 1996.

    Geweke, J., Monte carlo simulation and numerical integration, in: H. M. Amman, D. A. Kendrick, and J. Rust, (eds.), Handbook of Computational Economics, North-Holland, Amsterdam, pp.731-800, 1996.

    Glasserman, P. and Li, J., Importance sampling for portfolio credit risk. Management Science, Vol.51, No.11, pp.1643-1656, 2005.

    Gordy, M. and Heitfield, E., Estimating default correlation from short panels of credit rating, Working Paper, Federal Reserve Board, 2002.

    Gordy, M. B., A risk-factor model foundation for ratings-based capital rules, Journal of Finanial Intermediation, Vol.12, No.3, pp.199-232, 2003.

    Gössl, M., Predictions based on certain uncertainties - a Bayesian credit portfolio approach, Disscuss Paper, HypoVereinsbank, 2005.

    Greenberg, E., Introduction to Bayesian Econometrics, Cambridge University Press, New York, 2007.

    Gupton, G., Finger, C. and Bhatia, M., CreditMetricsTM, technical document, CreditMetrics, 1997.

    Hanson, S. and Schuermann, T., Confidence intervals for probabilities of default, Journal of Banking & Finance, Vol.30, No.8, pp.2281-2301, 2006.

    Kiefer, N. M., The probability approach to default probabilities, Risk, Vol.20, No.7, pp.146-150, 2007.

    Kiefer, N. M., Default estimation for low--default portfolios, Journal of Empirical Finance, Vol.16, No.1, pp.164-173, 2009.

    Kiefer, N. M., Default estimation and expert information, Journal of Business and Economic Statistics, Vol.28, No.2, pp.320-328, 2010.

    Kiefer, N. M., Default estimation, correlated defaults, and expert information, Journal of Applied Econometrics, Vol.26, No.2, pp.173-192, 2011.

    Kitagawa, G, Monte Carlo filter and smoother for non-Gaussian nonlinear state space model, Journal of Computational and Graphical Statistics, Vol.5, pp.1-25, 1996.

    Kitagawa, G, A self-organizing state-space model, Journal of the American Statistical Association, Vol.93, pp.1203-1215, 1998.

    Koopman, S. J. and Lucas, A., A non-Gaussian panel time series model for estimating and decomposing default risk, Journal of Business & Economic Statistics, Vol.26, pp.510-525, 2008.

    McNeil, A. J. and Wendin, J. P., Bayesian inferences for generalized linear mixed models of portfolio credit risk, Journal of Empirical Finance, Vol.14, No.2, pp.131-149, 2007.

    Moody’s, Moody’s: Global default rate on the rise, Announcement.

    Rachev, S. T., Hsu, J. S. J., Bagasheva, B. S. and Fabozzi, F. J., Bayesian Methods in Finance, Wiley, New York, 2008.

    Robert, C. and Casella, G., Monte Carlo Statistical Models, Springer, New York, 2004.

    Rösch, D, An empirical comparison of default risk forecasts from alternative credit rating philosophies, International Journal of Forecasting, Vol.21, pp.37-51, 2005.

    Schönbucher, P., Factor models: Portfolio credit risks when defaults are correlated, Journal of Risk Finance, Vol.3, No.1, pp.45-56, 2001.

    Shephard, N., Partial non-Gaussian state space, Biometrika, Vol.81, pp.115-132, 1994.

    Shephard, N. and Pitt, M. K., Likelihood analysis of non-Gaussian measurement time series, Biometrika, Vol.84, pp.653-667, 1997.

    Song, P. X.-K., Correlated Data Analysis: Modeling, Analytics, and Applications, Springer, New York, 2007.

    Soros, G., The New Paradigm for Financial Markets: The Credit Crisis of 2008 and What it Means, PublicAffairs, New York, 2008.

    Standard & Poor's, Default, Transition, and Recovery: 2009 Annual Global Corporate Default Study and Rating Transitions, Technical Report, Global Fixed Income Research, 2009.

    Vasicek, O., Loan portfolio value, Risk, Vol.15, No.12, pp.160-162, 2002.

    Wei, G. C. G. and Tanner, M. A., A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms, Journal of American Statistical Association, Vol.85, pp.699-704, 1990.

    Wu, L., Non-linear mixed-effect models with non-ignorably missing covariates, The Canadian Journal of Statistics, Vol.32, No.1, pp.27-37, 2004.
    Description: 博士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0095354501
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback