English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 94188/124659 (76%)
Visitors : 29684579      Online Users : 363
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/55136

    Title: 黃金價格預測探討-跳躍模型之改良
    On Forecasting Gold Price: An Improved Jump and Dip Forecasting Model
    Authors: 方玠人
    Fang, Chieh Jen
    Contributors: 蕭又新

    Fang, Chieh Jen
    Keywords: 黃金價格
    Gold Price
    Unit Root Test
    Jump and Dip Model
    Date: 2011
    Issue Date: 2012-11-01 13:58:44 (UTC+8)
    Abstract: 本文改良了Shafiee-Topal(2010)所提出之跳躍模型之波動率,並歸納成三種模型:改良跳躍模型、改良平滑跳躍模型以及最佳化跳躍模型,並運用時間序列模型探討樣本期間內黃金價格。第一部份比較三種跳躍模型與Shafiee-Topal模型在訓練集及測試集的預測結果,並預測2012年至2018年之黃金價格走勢。第二部份探討黃金價格、原油價格以及美元加權指數之間的互動關係,建立多變數模型以預測黃金價格之長期趨勢。
    首先,本文檢驗黃金價格、原油價格及美元加權指數樣本之恆定性,經由ADF 單根檢定法發現序列具有單根,進而使用TSP(Trend Stationary Process)估計模型參數。其次,黃金價格、原油價格及美元加權指數經共整合檢定發現,各模型變數間均具有共整合關係,即變數間具有長期均衡關係。黃金價格與原油價格呈正向反應,而黃金價格和原油價格與美元加權指數呈負向反應,除了受自身的預測解釋能力外,亦可以做為觀察其他變數的未來走勢方向及影響大小預估。最後,探討黃金價格受波動率的影響情形,本文改良Shafiee-Topal模型之波動率,並比較四種模型對黃金價格趨勢預測之結果,發現改良平滑跳躍模型在實際黃金價格波動率大時,其趨勢預測結果會優於Shafiee-Topal模型。
    This research advanced the volatility component (λ) of the jump and dip model (Shafiee and Topal,2010) on gold prices from 1968 to 2012 and estimated the gold price for the next 6 years. Based on the trend stationary process, we defined the three components and derived three new models: Adjusted Jump and Dip Model, Adjusted Smooth Jump and Dip Model and Optimized Jump and Dip Model.
    First part of the thesis compared the performance in prediction of the training data and the testing data for three different models and the jump and dip model. Second part of the thesis investigated the relationship among the gold price, crude oil price, and trade weighted U.S. dollar index of the concepts The result illustrated the long term trend of gold price described by a multivariate predictive model. We found evidence that different levels of volatility affect the prediction of gold price, and the adjusted jump and dip Model performs best when the true volatility is relatively high.
    Reference: 西文部份:
    Anderson, O. D. (1980). Analysing Time Series: . Amsterdam: North-Holland.
    Baffes, J. (2007). Oil Spills on Other Commodities. Resources Policy, 32,
    Banerjee, A., Dolado, J., Galbraith, J. W., & Hendry, D. (1993).
    Co-integration, Error Correction, and the Econometric Analysis of
    Non-Stationary Data. USA: Oxford University Press.
    Box, G. E. P., & Jenkins, G. M. (1994). Time Series Analysis: Forecasting
    and Control (3rd ed.): Prentice Hall.
    Brown, R. G., Meyer, R. F., & D'Esopo, D. A. (1961). The Fundamental Theorem
    of Exponential Smoothing. Operations Research, 9(5), 673-687.
    Chatfield, C. (2003). The Analysis of Time Series: An Introduction (6th ed.).
    New York: Chapman and Hall/CRC.
    Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for
    Autoregressive Time Series With a Unit Root. Journal of the Ameican
    Statistical Association, 74(366), 427-431.
    Engle, R. F., & Granger, C. W. J. (1987). Co-Integration and Error Correction:
    Representation, Estimation, and Testing. Econometrica, 55(2), 251-276.
    Granger, C. W. J., & Newbold, P. (1974). Supirous Regression in economics.
    Journal of Econometrics, 2, 111-120.
    Greenberg, E., & Webster, C. E. (1983). Advanced Econometrics: A Bridge to
    the Literature. New York: John Wiley and Sons.
    Maddala, G. S., & Kim, I.-M. (1998). Unit Roots, Cointegration, and
    Structural Change. Cambridge: Cambridge University Press.
    Nelson, C. R., & Plosser, C. I. (1982). Trends and random walks in
    macroeconmic time series. Some evidence and implications. Journal of
    Monetary Economics, 10, 139-162.
    Pankratz, A. (1983). Forecasting with Univariate Box-Jenkins Models Concepts
    and Cases. New York: John Wiley and Sons.
    Phillips, P. C. B., & Ouliaris, S. (1990). Asymptotic Properties of Residual
    Based Tests for Cointegration. Econometrica, 58(1), 165-193.
    Pindyck, R. S., & Rotemberg, J. J. (1990). The Excess Co-Movement of Commodity
    Prices. The Economic Journal, 100(403), 1173-1189.
    Said, S. E., & Dickey, D. A. (1984). Testing for unit roots in
    autoregressive-moving average models of unknown order. Biometrika,
    71(3), 599-607.
    Shafiee, S., & Topal, E. (2010). An overview of global gold market and gold
    price forecasting. Resources Policy, 35(3), 178-189.

    楊奕農(2011)。時間序列分析-經濟與財務上之應用 (二版)。 台北: 雙葉書廊。
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0098755013
    Data Type: thesis
    Appears in Collections:[應用物理研究所 ] 學位論文

    Files in This Item:

    File SizeFormat
    501301.pdf2701KbAdobe PDF414View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback