English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88837/118541 (75%)
Visitors : 23546646      Online Users : 475
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/60792


    Title: 分量迴歸在大量估價模型之應用—非典型住宅估價之改進
    Other Titles: Quantile Regression Analysis of Residential Mass Appraisal Models-Improvement in Atypical Housing Appraisal
    Authors: 張怡文;江穎慧;張金鶚
    Chang,Yi-Wen;Chiang,Ying-Hui;Chang,Chin-Oh
    Contributors: 政大地政系
    Keywords: 不動產估價;大量估價;分量迴歸;非典型住宅
    Real estate appraisal;Mass appraisal;Quantile regression;Atypical housing
    Date: 2009-09
    Issue Date: 2013-09-13
    Abstract: 隨著國內不動產市場M型化推案趨勢,非典型住宅(如:高總價豪宅和低總價小套房)類型逐漸增多,對於此類型產品的估價精準度也需要提升。從過去研究發現,最小平方迴歸估計忽略各特徵屬性對價格條件分配的差異。本研究乃以分量迴歸方法建立住宅大量估價模型,藉以瞭解住宅特徵對於不同價格分量的差異,實證結果發現以最小平方迴歸模型估計相較於分量迴歸,對於一樓、頂樓、車位、區位等變數有高估或低估的情形。比較估值模型預測精確度,本文透過30次重複實驗,發現分量迴歸對於兩側尾端樣本有較佳的預測能力。從實證方法而言,本文改進以最小平方迴歸模型對兩尾端價格高估或低估問題;就實務應用方面,隨著不動產產品差異度增加,以及新版巴塞爾協定(Basel Ⅱ)實施對不動產價值更新的需求,分量迴歸模型可提升兩尾端估計精確度,並提供住宅大量估價系統另一種資產重估方法。
    Analysis of the current domestic trend of residential types shows that high-priced and low-priced dwelling units are gaining popularity. Thus, the estimation of popularity of these two classes of residence should be made more precise. Because ordinary least square regression cannot signify the variation caused by different quantile functions of a conditional distribution, this study estimates the housing price by quantile regression. The models are compared with ordinary least square regression and quantile regression. Empirical results reveal that the distributions of some variables, such as first floor, top floor, parking lot, location, are different between the two models. These differences are easily underestimated or overestimated when applying ordinary least square regression. Results of hit rate and mean absolute percentage error based on 30 repeated experiments using random sampling indicate that quantile regression estimates more accurately than ordinary least square regression on two-tailed distribution. For mass appraisal applications, a quantile regression advances the estimate on two-tailed price, and provides a new method for asset reevaluation of banks.
    Relation: 都市與計劃, 36(3), 281-304
    Data Type: article
    Appears in Collections:[地政學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    281304.pdf1267KbAdobe PDF842View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback