政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/60829
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 88295/117812 (75%)
Visitors : 23397407      Online Users : 126
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/60829


    Title: Constraints on the origin and evolution of Iani Chaos, Mars
    Authors: Warner,Nicholas H.;Gupta,Sanjeev;Kim,Jung-Rack;Muller,Jan-Peter;Corre,Lucille Le;Morley,Jeremy;Lin,Shih-Yuan;McGonigle,Chris
    Contributors: 政大地政系
    Keywords: Iani Chaos;chaos;catastrophic floods;Mars;Ares Vallis;interior layered deposits
    Date: 2011
    Issue Date: 2013-09-13 14:10:13 (UTC+8)
    Abstract: [1] The origin mechanisms and geologic evolution of chaotic terrain on Mars are poorly constrained. Iani Chaos, located at the head Ares Vallis, is among the most geomorphologically complex of the chaotic terrains. Its morphology is defined by (1) multiple, 1 to 2 km deep basins, (2) flat-topped, fractured plateaus that are remnants of highland terrain, (3) knobby, fractured remnants of highland terrain, (4) plateaus with a knobby surface morphology, (5) interchaos grooved terrain, (6) interior layered deposits (ILDs), and (7) mantling material. Topography, the observed geomorphology, and measured fracture patterns suggest that the interchaos basins formed as a result of subsurface volume loss and collapse of the crust, likely owing to effusion of groundwater to the surface. Regional patterns in fracture orientation indicate that the basins developed along linear zones of preexisting weakness in the highland crust. Multiple overlapping basins and fracture systems point to multiple stages of collapse at Iani Chaos. Furthermore, the total estimated volume loss from the basins (104 km3) is insufficient to explain erosion of 104–105 km3 of material from Ares Vallis by a single flood. Comparisons with the chronology of Ares Vallis indicate multiple water effusion events from Iani Chaos that span the Hesperian, with termination of activity in the early Amazonian. Recharge of groundwater through preexisting fracture systems may explain this long-lived, but likely episodic, fluvial activity. Late-stage, early to middle Amazonian aqueous processes may have deposited the ILDs. However, the topography data indicate that the ILDs did not form within lacustrine environments.
    Relation: Journal of Geophysical Research: Planets , Vol.116. Issue E6,
    Data Type: article
    DOI link: http://dx.doi.org/10.1029/2010JE003787
    DOI: 10.1029/2010JE003787
    Appears in Collections:[Department of Land Economics ] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    2920.pdf9030KbAdobe PDF875View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback