English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 94559/125088 (76%)
Visitors : 29796582      Online Users : 561
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/61169

    Title: 以全波形光達之波形資料輔助製作植被覆蓋區數值高程模型
    DEM Generation with Full-Waveform LiDAR Data in Vegetation Area
    Authors: 廖思睿
    Liao, Sui Jui
    Contributors: 林士淵
    Lin, Shih Yuan
    Liao, Sui Jui
    Keywords: 空載全波形雷射掃描
    Airborne full-waveform laser scanning
    vegetation land cover
    point cloud filtering
    Bayes theorem
    Date: 2013
    Issue Date: 2013-10-01 11:51:05 (UTC+8)
    Abstract: 在植被覆蓋的山區中,由於空載雷射掃描可穿透植被間縫隙的特性,有較高機會收集到植被下的地面資訊,因此適合作為製作植被覆蓋地區數值高程模型的資料來源,而在過濾過程中,一般僅利用點雲間的三維位置關係進行幾何過濾,而全波形空載雷射掃描可另外提供點位的波形寬、振幅值、散射截面積以及散射截面積數等波形資料,本研究將透過波形資料分析進行點雲過濾。
    In mountain areas covered with vegetation, discrete airborne laser scanning is an appropriate technique to produce DEMs for its laser signal is able to reach the ground beneath the vegetation. Once the scanned data was derived, point cloud filtering was performed based on the geometry relationship between the points at the processing stage. With the development of the advanced full-waveform laser scanning system, the additional waveform data has been proved useful for improving the performance of point cloud filtering. This research therefore focused on using the waveform data to extract DEM over vegetation covered area.
    The amplitude, backscatter cross-section and backscatter cross-section coefficient were the waveform parameters used to do the filtering. After initial waveform analysis was accomplished, an automated method to determine threshold range of each parameter representing ground points was proposed. By applying the thresholds, the original point cloud was filtered. Geometric filtering method was then used to eliminate the remained non-ground points. As a result, the DEM over the target vegetated area was derived. With the comparison against photogrammetric DEM and DEM derived from traditional filtering method, it was demonstrated that the quality of the resultant DEM was improved.
    Reference: 一、中文參考文獻
    Abshire, J. M., McGarray, J.F., Pacini, L.K., Blair, J.B. and Elman, C.G., 1994, Laser Altimetry Simulator version 3.0, User’s Guide, USA: NASA Technical Memorandum 104588.
    Axelsson, P., 2000, “DEM generation from laser scanner data using adaptive TIN models”, International archives of Photogrammetry and Remote Sensing, 33(Part B4), 110-117.
    Beraldin, J. A., Blais, F. and Lohr, U., 2010, “Laser Scanning Technology”, pp.1-42 in Airborne and terrestrial Laser Scanning, edited by Vosselmen, G. and Maas, H-G., UK: Whittles Publishing.
    Doneus, M., Briese, C., 2006, “Digital terrain modelling for archaeological interpretation within forested areas using full-waveform laser scanning”, pp.155-162 in The 7th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST, edited by Arnold, D., Ioannides, M., Niccolucci, F. and Mania, K., Cyprus.
    Doneus, M., Briese, C., Fera, M., Janner, M., 2008, “Archaeological prospection of forested areas using full-waveform airborne laser scanning”, Journal of Archaeological Science, 35:882-893.
    Ducic, V., Hollaus, M., Ullrich, A., Wagner, W. and Melzer, T., 2006. “3D vegetation mapping and classification using full-waveform laser scanning”. Workshop on 3D Remote Sensing in Forestry, 14-15 February 2006, Vienna. 211-217.
    Frohlich, C. and Mettenleiter, M., 2004, “Terrestrial laser scanning – new perspectives in 3D surveying”, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(8/W2): 7-13.
    Jutzi, B. and Stilla, U., 2006, “Range determination with waveform recordinglaser systems using a Wiener Filter”, ISPRS Journal of Photogrammetry & Remote Sensing, 61: 95-107.
    Kraus, K., Pfeifer, N., 1998, “Determination of terrain models in wooded areas with airborne laser scanner data”, ISPRS Journal of Photogrammetry & Remote Sensing, 53, 193–203.
    Lin, Y. C., 2009, Digital Terrain Modelling from Small-footprint, Full-Waveform Airborne Laser Scanning Data, School of Civil Engineering and Geosciences, New Castle University, UK.
    Lin, Y. C. and Mills, J. P., 2010, “Factors influencing pulse width of small-footprint, full-waveform airborne laser scanning data”, Photogrammetric Engineering & Remote Sensing, 76(1): 49-59.
    Lin, Y. C. and Mills, J. P., and Smith-Voysey, S., 2010, “Rigorous pulse detection from full-waveform airborne laser scanning data”, International Journal of Remote Sensing, 31(5):1303-1324.
    Mallet, C. and Bretar, F., 2009, “Full-waveform topographic lidar: State-of-the-art”, ISPRS Journal of Photogrammetry and Remote Sensing, 64, 1-13.
    Mücke, W., 2008, Analysis of Full-Waveform Airborne Laser Scanning Data for the Improvement of DTM Generation, Vienna University of Technology, Vienna, Austria.
    Persson, Å., Söderman, U., Töpel, J. and Ahlberg, S., 2005. “Visualization and analysis of fullwaveform airborne laser scanner data”. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(3/W19): 103-108
    Sithole, G. and Vosselman, G., 2003. “Report: ISPRS Comparison of Filters”. ISPRS Commission III, Working Group 3.
    Sithole, G. and Vosselman, G., 2004. “Experimental comparison of filter algorithms for bare Earth extraction from airborne laser scanning point clouds”, ISPRS Journal of Photogrammetry & Remote Sensing, 59: 85-101.
    Stilla, U., and Jutzi, B., 2008, “Waveform Analysis for Small-Footprint Pulsed Laser Systems”, pp.215-235 in Topographic Laser Ranging and Scanning: Principles and Processing, edited by Shan, J. and Toth, C., K., US: CRC Press.
    Wagner, W., 2010, “Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts”. ISPRS Journal of Photogrammetry & Remote Sensing, 65: 505-513.
    Wagner, W., Hollaus, M., Briese, C. and Ducic, V., 2008. “3D vegetation mapping using smallfootprint full-waveform airborne laser scanners”. International Journal of Remote Sensing, 29(5):1433-1452.
    Wagner, W., Ullrich, A., Ducic, V., Melzer, T. and Studnicka, N., 2006. “Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laserscanner”. ISPRS Journal of Photogrammetry & Remote Sensing, 60: 100-112.
    Wagner, W., Ullrich, A., Melzer, T., Briese, C. and Kraus, K., 2004. “From single-pulse to fullwaveform airborne laser scanners: potential and practical challenge”. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(B3): 201-206.
    Wang, C. K., “Exploring weak and overlapped returns of a LIDAR waveform with a wavelet-based echo detector”. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 39(B7): 529-534.
    Wolf, P. R. and Dewitt, B. A., 2000. Elements of Photogrammetry: with Applications in GIS, third edition. New York, USA: McGraw Hill.
    Riegl, 2012a. Long range airborne laser scanner for full-waveform snalysis LMS-Q680. http://www.riegl.com/uploads/tx_pxpriegldownloads/10_DataSheet_LMS-Q680i_04-04-2012_01.pdf (accessed 23 April. 2012)
    Riegl, 2012b. Full-waveform analysis software RiAnalysis. http://www.riegl.com/uploads/tx_pxpriegldownloads/11_Datasheet_RiANALYZE_22-09-2010.pdf (accessed 23 April. 2012)
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0099257026
    Data Type: thesis
    Appears in Collections:[地政學系] 學位論文

    Files in This Item:

    File SizeFormat
    702601.pdf4171KbAdobe PDF1270View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback