English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 92664/122999 (75%)
Visitors : 26928688      Online Users : 405
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/61614
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/61614

    Title: Uniform Design over General Input Domains with Applications to Target Region Estimation in Computer Experiments
    Authors: 洪英超
    Chuang, S. C.;Hung;Y. C.
    Contributors: 統計系
    Keywords: Dirichlet 隨機向量;電腦生成時間;敏感度分析;多維度適合度
    Dirichlet random vector;Computer generation time;Sensitivity analysis;Multivariate goodness-of-fit
    Date: 2010.01
    Issue Date: 2013-11-11 17:47:58 (UTC+8)
    Abstract: 在這篇文章中,我們提供一些用以生成 Dirichlet 隨機向量的演算法,並根據以下標準來評估這些演算法的表現:(一)電腦生成時間;(二)敏感度;以及(三)適合度。 另外,我們特別檢驗一個基於 beta 變量轉換的演算法,並提供三個方針以減少此演算法的生成時間。模擬的結果顯示,除了所有(或大部分)的形狀變數都相當接近零的情況之外,基於我們所提出的方針整合而成的演算法顯著地在電腦生成時間上勝過其他的演算法。
    The power of uniform design (UD) has received great attention in the area of computer experiments over the last two decades. However, when conducting a typical computer experiment, one finds many non-rectangular types of input domains on which traditional UD methods cannot be adequately applied. In this study, we propose a new UD method that is suitable for any type of design area. For practical implementation, we develop an efficient algorithm to construct a so-called nearly uniform design (NUD) and show that it approximates very well the UD solution for small sizes of experiment. By utilizing the proposed UD method, we also develop a methodology for estimating the target region of computer experiments. The methodology is sequential and aims to (i) provide adaptive models that predict well the output measures related to the experimental target; and (ii) minimize the number of experimental trials. Finally, we illustrate the developed methodology on various examples and show that, given the same experimental budget, it outperforms other approaches in estimating the prespecified target region of computer experiments.
    Relation: Computational Statistics & Data Analysis, 54(1), 219-232
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1016/j.csda.2009.08.008
    DOI: 10.1016/j.csda.2009.08.008
    Appears in Collections:[統計學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    1-s2.0-S016794730900293X-main.pdf4263KbAdobe PDF843View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback