English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 89686/119522 (75%)
Visitors : 23949709      Online Users : 384
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/63538


    Title: Magnetic anisotropy and spin-spiral wave in V, Cr and Mn atomic chains on Cu(0 0 1) surface: first principles calculations
    Authors: 郭光宇
    Guo, Guang-Yu
    Contributors: 應物所
    Date: 2011.05
    Issue Date: 2014-01-24 12:37:18 (UTC+8)
    Abstract: Recent ab intio studies of the magnetic properties of all 3d transition metal (TM) freestanding atomic chains have predicted that these nanowires could have a giant magnetic anisotropy energy (MAE) and might support a spin-spiral structure, thereby suggesting that these nanowires would have technological applications in, e.g. high-density magnetic data storage. In order to investigate how the substrates may affect the magnetic properties of the nanowires, here we systematically study V, Cr and Mn linear atomic chains on a Cu(0 0 1) surface based on the density functional theory with the generalized gradient approximation. We find that V, Cr and Mn linear chains on the Cu(0 0 1) surface still have a stable or metastable ferromagnetic state. However, the ferromagnetic state is unstable against the formation of a noncollinear spin-spiral structure in the Mn linear chains and also the V linear chain on the atop sites on the Cu(0 0 1) surface, due to the frustrated magnetic interactions in these systems. Nonetheless, the presence of the Cu(0 0 1) substrate does destabilize the spin-spiral state already present in the freestanding V linear chain and stabilizes the ferromagnetic state in the V linear chain on the hollow sites on Cu(0 0 1). When spin–orbit coupling (SOC) is included, the spin magnetic moments remain almost unchanged due to the weakness of SOC in 3d TM chains. Furthermore, both the orbital magnetic moments and MAEs for V, Cr and Mn are small, in comparison with both the corresponding freestanding nanowires and also the Fe, Co and Ni linear chains on the Cu(0 0 1) surface.
    Relation: Journal of Physics D: Applied Physics, 44, 205003
    Source URI: http://dx.doi.org/10.1088/0022-3727/44/20/205003
    Data Type: article
    Appears in Collections:[應用物理研究所 ] 期刊論文

    Files in This Item:

    File Description SizeFormat
    205003.pdf317KbAdobe PDF1103View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback