English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 92604/122928 (75%)
Visitors : 26867546      Online Users : 524
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/63810
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/63810

    Title: More powerful tests for the sign testing problem about gamma scale parameters
    Authors: 劉惠美
    Chan, Chia-Hao;Liu, Huimei;Zen, Mei-Mei
    Contributors: 統計系
    Keywords: intersection–union test;likelihood ratio test;more powerful test;normal variance;sign testing;two-parameter exponential distribution
    Date: 2013.12
    Issue Date: 2014-02-11 17:30:16 (UTC+8)
    Abstract: For i=1, … , p, let denote independent random samples from gamma distributions with unknown scale parameters θi and known shape parameters ηi. Consider testing H0:θi≤θi0 for some i=1, … , p versus H1:θi>θi0 for all i=1, … , p, where θ10, … , θp0 are fixed constants. For any 0<α<0.4, we construct two new tests that have the same size as the likelihood ratio test (LRT) and are uniformly more powerful than it. Power comparisons of our tests with other tests are given. The proposed tests are intersection–union tests. We apply the results to test the variances of normal distributions and scale parameters of two-parameter exponential distributions. Finally, we illustrate our proposed tests with an example.
    Relation: Statistics:A Journal of Theoretical and Applied Statistics,
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1080/02331888.2013.863887
    DOI: 10.1080/02331888.2013.863887
    Appears in Collections:[統計學系] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback