政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/64481
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 93144/123516 (75%)
造訪人次 : 27617084      線上人數 : 203
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 理學院 > 資訊科學系 > 期刊論文 >  Item 140.119/64481
    請使用永久網址來引用或連結此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/64481


    題名: Learning a Merge Model for Multilingual Information Retrieval
    作者: Tsai, Ming-Feng
    蔡銘峰
    Chen, Hsin-Hsi
    Wang, Yu-Ting
    貢獻者: 資科系
    關鍵詞: Learning to merge;Merge model;MLIR
    日期: 2011.09
    上傳時間: 2014-03-06 16:29:28 (UTC+8)
    摘要: This paper proposes a learning approach for the merging process in multilingual information retrieval (MLIR). To conduct the learning approach, we present a number of features that may influence the MLIR merging process. These features are mainly extracted from three levels: query, document, and translation. After the feature extraction, we then use the FRank ranking algorithm to construct a merge model. To the best of our knowledge, this practice is the first attempt to use a learning-based ranking algorithm to construct a merge model for MLIR merging. In our experiments, three test collections for the task of crosslingual information retrieval (CLIR) in NTCIR3, 4, and 5 are employed to assess the performance of our proposed method. Moreover, several merging methods are also carried out for a comparison, including traditional merging methods, the 2-step merging strategy, and the merging method based on logistic regression. The experimental results show that our proposed method can significantly improve merging quality on two different types of datasets. In addition to the effectiveness, through the merge model generated by FRank, our method can further identify key factors that influence the merging process. This information might provide us more insight and understanding into MLIR merging.
    關聯: Information Processing and Management, 47(5), 635-646
    資料類型: article
    DOI 連結: http://dx.doi.org/10.1016/j.ipm.2009.12.002
    DOI: 10.1016/j.ipm.2009.12.002
    顯示於類別:[資訊科學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    635646.pdf293KbAdobe PDF1132檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋