English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 93833/124280 (76%)
Visitors : 28890372      Online Users : 592
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/66451
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/66451

    Title: 機器學習中的近似貝氏推論
    Other Titles: An Overview Of Approximate Bayesian Inference In Machine Learning
    Authors: 翁久幸
    Weng, Chiu-Hsing,
    Contributors: 統計系
    Keywords: 近似貝氏推論;機器學習
    Approximate Bayesian inference;machine learning
    Date: 2013-11
    Issue Date: 2014-06-04 12:24:15 (UTC+8)
    Abstract: 機器學習這門學科是關於設計演算法, 讓計算機得以透過演算法從數據中自動分析學習資料的規律。 很多的機器學習方法根基於機率模型以及貝氏統計的架構。 近似的貝氏推論方法中, 像馬可夫鏈蒙特卡羅這類的隨機模擬向來廣為人知且深受歡迎。 然而, 除了隨機模擬之外, 還有一些確定性的近似方法在許多應用中獲得相當成功。 我們在這篇文章裡將介紹若干確定性近似方法的概念和發展。
    Machine learning is a scientific discipline that concerned with designing algorithms to automatically learn complex patterns based on data. Many of the machine learning methods rely on probabilistic models and treat the models in a Bayesian framework. Sampling methods such as Markov Chain Monte Carlo are popular and well known for approximate Bayesian inference. Alternatively, there are deterministic approximation techniques which have been successful in many applications. We present here some of the concepts and developments about deterministic approximation methods.
    Relation: 中國統計學報,52(1),44-58
    Data Type: article
    Appears in Collections:[統計學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    4458.pdf150KbAdobe PDF692View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback