English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 91913/122132 (75%)
Visitors : 25803336      Online Users : 241
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/67859
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/67859

    Title: 單一總體尺度及多項評估的合意度分析
    Agreement analysis between a single global scale and multi‐item assessments
    Authors: 顏柏魁
    Contributors: 鄭宗記
    Keywords: 期望最大演算法
    Date: 2013
    Issue Date: 2014-07-29 16:03:07 (UTC+8)
    Abstract: 實務上,不完整資料為常見的問題,對於遺漏值的處理方式,分成刪除法或填補法這兩種方法,而面對問卷類型的資料,通常採用順序尺度變數當作問卷的評分標準,本篇使用EM方法填補遺漏值,由於順序尺度變數時常發生樣本數可能沒有遠大於問卷之題目組成的列聯表格子數,導致EM無法執行,因此逐次對資料執行EM填補遺漏值。藉由EM填補後的完整資料使用加總尺度、因素分析和非線性主成分分析整合為單一總體尺度,應用等級轉換法將單一總體尺度轉換為順序尺度,接著評估兩順序尺度變數之間合意度。
    Reference: Carroll, J. B. (1961). The nature of the data, or how to choose a correlation coefficient. Psychometrika, 26(4), 347-372.
    Chen, T., & Fienberg, S. E. (1974). Two-dimensional contingency tables with both completely and partially cross-classified data. Biometrics, 629-642.
    De Leeuw, J., & Mair, P. (2009). Gifi methods for optimal scaling in R: The package homals. Journal of Statistical Software, forthcoming, 1-30.
    DiStefano, C., Zhu, M., & Mindrila, D. (2009). Understanding and using factor scores: Considerations for the applied researcher. Practical Assessment, Research & Evaluation, 14(20), 1-11.
    Everitt, B., & Hothorn, T. (2011). An introduction to applied multivariate analysis with R. Springer.
    Fuchs, C. (1982). Maximum likelihood estimation and model selection in contingency tables with missing data. Journal of the American Statistical Association, 77(378), 270-278.
    Fayers, P., & Machin, D. (2007). Quality of life: the assessment, analysis and interpretation of patient-reported outcomes. John Wiley & Sons.
    Gifi, A. (1990). Homogeneity analysis. Nonlinear multivariate analysis. Chichester: John Wiley & Sons.
    Hochberg, Y. (1977). On the use of double sampling schemes in analyzing categorical data with misclassification errors. Journal of the American Statistical Association, 72(360a), 914-921.
    Kuroda, M., Mori, Y., Masaya, I., & Sakakihara, M. Alternating least squares in nonlinear prin-cipal components.
    Little, R. J., & Rubin, D. B. (1989). The analysis of social science data with missing values. Sociological Methods & Research, 18(2-3), 292-326.
    Olsson, U. (1979). Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, 44(4), 443-460.
    Svensson, E. (2000). Comparison of the quality of assessments using continuous and discrete ordinal rating scales. Biometrical Journal, 42(4), 417-434.
    Svensson, E., & Holm, S. (1994). Separation of systematic and random differences in ordinal rating scales. Statistics in medicine, 13(23‐24), 2437-2453.
    Schafer, J. L. (2010). Analysis of incomplete multivariate data. CRC press.
    Svensson, E. (2012). Different ranking approaches defining association and agreement measures of paired ordinal data. Statistics in medicine, 31(26), 3104-3117.
    Tallis, G. M. (1962). The maximum likelihood estimation of correlation from contingency tables. Biometrics, 18(3), 342-353.
    Uebersax, J. S. (2006). The tetrachoric and polychoric correlation coefficients.Statistical methods for rater agreement web site, 2006.
    Description: 碩士
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0101354020
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    402001.pdf1119KbAdobe PDF19View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback