English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 94524/125052 (76%)
Visitors : 29721468      Online Users : 260
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/70507

    Title: Exchange Bias Effect on the Relaxation Behavior of the IrMn/NiFe Bilayer System.
    Authors: 李尚凡
    Abdulahad, F.B.;Hung,Dung-Shung;Chiu,Yu-Che;Lee,Shang-Fan
    Contributors: 應物所
    Date: 2011-10
    Issue Date: 2014-10-09 15:51:13 (UTC+8)
    Abstract: Magnetization dynamic of exchange bias IrMn/NiFe bilayers system were investigated. Samples with fixed ferromagnetic (FM) layer thickness of 25 nm and antiferromagnetic (AFM) layer thickness tAFM of 5, 10, 15 and 20 nm were deposited by dc-magnetron sputtering on buffered silicon substrates. The static exchange bias field extracted from the magnetization curves increased at the beginning with increasing AFM layer thickness then slightly decreased. The dynamic behavior was studied from the ferromagnetic resonance (FMR) spectra of the samples under external magnetic field in the range 50-750 Oe. The linewidth versus frequency was found to have two distinct slope regions for the samples with high exchange bias values. The damping coefficient at frequencies up to about 7 GHz is found to be generated from the intrinsic linewidth broadening and it has a similar tendency to the exchange bias field with increasing AFM layer thickness. At higher frequencies, the damping coefficient is generated from the extrinsic contributions to the linewidth broadening and its behavior with increasing AFM layer thickness follows the dynamic anisotropy.
    Relation: IEEE Trans. Magn.,47(10),4227 - 4230
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1109/TMAG.2011.2157321
    DOI: 10.1109/TMAG.2011.2157321
    Appears in Collections:[應用物理研究所 ] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback