English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 94559/125088 (76%)
Visitors : 29762938      Online Users : 360
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 企業管理學系 > 期刊論文 >  Item 140.119/70627
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/70627

    Title: Discovering Recency, Frequency and Monetary (RFM) Sequential Patterns from Customers'' Purchasing Data
    Authors: 唐揆
    Tang, Kwei
    Contributors: 企管系
    Keywords: Sequential pattern;Constraint-based mining;RFM;Segmentation
    Date: 2009.10
    Issue Date: 2014-10-16 17:52:16 (UTC+8)
    Abstract: In response to the thriving development in electronic commerce (EC), many on-line retailers have developed Web-based information systems to handle enormous amounts of transactions on the Internet. These systems can automatically capture data on the browsing histories and purchasing records of individual customers. This capability has motivated the development of data-mining applications. Sequential pattern mining (SPM) is a useful data-mining method to discover customers’ purchasing patterns over time. We incorporate the recency, frequency, and monetary (RFM) concept presented in the marketing literature to define the RFM sequential pattern and develop a novel algorithm for generating all RFM sequential patterns from customers’ purchasing data. Using the algorithm, we propose a pattern segmentation framework to generate valuable information on customer purchasing behavior for managerial decision-making. Extensive experiments are carried out, using synthetic datasets and a transactional dataset collected by a retail chain in Taiwan, to evaluate the proposed algorithm and empirically demonstrate the benefits of using RFM sequential patterns in analyzing customers’ purchasing data.
    Relation: Electronic Commerce Research and Applications, 8(5), 241-251
    Data Type: article
    Appears in Collections:[企業管理學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    241251.pdf806KbAdobe PDF973View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback