政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/71192
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  全文笔数/总笔数 : 88987/118697 (75%)
造访人次 : 23577496      在线人数 : 192
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/71192


    请使用永久网址来引用或连结此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/71192


    题名: A Resistant Learning Procedure for Coping with Outliers
    作者: 鄭宗記;蔡瑞煌
    Tsaih,Rua-Huan;Cheng,Tsung-Chi
    贡献者: 統計系
    关键词: Resistant learning;Outliers;Single-hidden layer feed-forward neural networks;Smallest trimmed sum of squared residuals principle;Deletion diagnostics
    日期: 2010.05
    上传时间: 2014-11-06 18:22:06 (UTC+8)
    摘要: In the context of resistant learning, outliers are the observations far away from the fitting function that is deduced from a subset of the given observations and whose form is adaptable during the process. This study presents a resistant learning procedure for coping with outliers via single-hidden layer feed-forward neural network (SLFN). The smallest trimmed sum of squared residuals principle is adopted as the guidance of the proposed procedure, and key mechanisms are: an analysis mechanism that excludes any potential outliers at early stages of the process, a modeling mechanism that deduces enough hidden nodes for fitting the reference observations, an estimating mechanism that tunes the associated weights of SLFN, and a deletion diagnostics mechanism that checks to see if the resulted SLFN is stable. The lake data set is used to demonstrate the resistant-learning performance of the proposed procedure.
    關聯: Annals of Mathematics and Artificial Intelligence57(2),161-180
    数据类型: article
    DOI 連結: http://dx.doi.org/10.1007/s10472-010-9183-0
    DOI: 10.1007/s10472-010-9183-0
    显示于类别:[統計學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    161-180.pdf590KbAdobe PDF685检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈