English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 94188/124659 (76%)
Visitors : 29661916      Online Users : 369
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/71324
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/71324

    Title: Signal Detection for Process with Unknown Distribution.
    Authors: Yang,Su-Fen
    Contributors: 統計系
    Date: 2012.08
    Issue Date: 2014-11-11 11:03:11 (UTC+8)
    Abstract: Control charts are effective tools for monitoring both manufacturing processes and service processes. Much service data comes from a process with variables having non-normal or unknown distributions. The commonly used Shewhart variable control charts which depend heavily on the normality assumption should not be applied here. Hence, an alternative is desired to handle these types of process data. In this paper, we propose a new Variance Chart based on a simple statistic to monitor process variance shifts. The sampling properties of the new monitoring statistic are explored. A numerical example of service times from a bank service system with a right skewed distribution is used to illustrate the proposed Variance Chart. A comparison with two existing charts is also performed. The Variance Chart showed better ability than those two charts in detecting shifts in the process variance.
    Relation: Advanced Materials Research,504,1472-1475
    Data Type: article
    Appears in Collections:[統計學系] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback