English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  Items with full text/Total items : 88866/118573 (75%)
Visitors : 23556612      Online Users : 138
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/72151
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/72151


    Title: Fuzzy Canonical Discriminant Analysis
    Other Titles: 模糊典型判別分析
    Authors: 鄭宇庭
    Cheng, Yu-Ting
    Contributors: 統計系
    Keywords: 判別分析;模糊;典型;分類問題;Fuzzy canonical discriminant analysis;Fisher canonical discrimination;Classification
    Date: 2011-02
    Issue Date: 2014-12-18 10:05:34 (UTC+8)
    Abstract: The main purpose of discriminant analysis is to apply a set of known observations to classify the observation of unknown groups into pre-defined groups. In traditional discriminant analysis, the classification of the data is limited to either belong or not belong to a specific set. As such some of the information contained in the data might have been ignored. In this paper, we propose fuzzy canonical discriminant analysis, a new classification method, to classify groups of known observations and determine the membership function of each set. This membership function is then taken to apply on the unknown observations. The fuzzy canonical discriminant analysis takes in data matrices with unknown observations which are weighted by membership degrees. To find out the correlation between parameters, this paper maximizes the ratio of the weighted sum of square between the ”between groups” and the ”within groups” by Lagrange Multiplier method. The initial value is given and then iterative algorithm is applied to calculate the estimation of the parameters.We compare fuzzy discriminant analysis with canonical discrimination, based on the example from three species of Iris. We found that it improves the accuracy of discriminant analysis when the sample size is small.
    判別分析主要在於利用已知群組之樣本點,對未知樣本點做群組歸屬判斷。傳統判別分析對於已知樣本點,只能限制其完全屬於或完全不屬於某一群組,因此常會失去一些原本資料所給的訊息。本文嘗試利用模糊數學的多值邏輯理論,對於群組界限不是很明確的樣本點,給定其屬於各群組的隸屬度,以此做為已知資料,對未知樣本點做群組歸屬判斷,而判定結果也以樣本點屬於各群組的隸屬度表示。模糊判別分析方法主要是將未知資料點納入資料矩陣之中,以樣本點屬於各群的隸屬度為權數大小,並以拉氏乘數(Lagrange multiplier)法,找出使群間加權離均平方和與群內加權離均平方和比值為最大的各參數相對關係。給定一初始值之後,採用遞迴(iterative)運算的方式,求出各欲估參數的值。將本文推導所得之模糊判別分析方法,應用於鳶尾花品種判別分析。以此結果與傳統判別分析方法做比較,發現在建立模式的已知樣本數較少時,採用模糊判別分析方法可以改善部份誤判情形。
    Relation: Journal of Data Analysis, 6(1), 115-133
    Data Type: article
    Appears in Collections:[統計學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    115-133.pdf1065KbAdobe PDF861View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback