English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 91913/122132 (75%)
Visitors : 25778766      Online Users : 249
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/72224
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/72224

    Title: Early stopping of L2Boosting
    Authors: Chang,Yuan-Chin Ivan;Huang,Yufen;Huang,Yu-Pai
    Contributors: 統計系
    Date: 2010-12
    Issue Date: 2014-12-23 15:19:20 (UTC+8)
    Abstract: It is well known that the boosting-like algorithms, such as AdaBoost and many of its modifications, may over-fit the training data when the number of boosting iterations becomes large. Therefore, how to stop a boosting algorithm at an appropriate iteration time is a longstanding problem for the past decade (see Meir and Rätsch, 2003). Bühlmann and Yu (2005) applied model selection criteria to estimate the stopping iteration for L2Boosting, but it is still necessary to compute all boosting iterations under consideration for the training data. Thus, the main purpose of this paper is focused on studying the early stopping rule for L2Boosting during the training stage to seek a very substantial computational saving. The proposed method is based on a change point detection method on the values of model selection criteria during the training stage. This method is also extended to two-class classification problems which are very common in medical and bioinformatics applications. A simulation study and a real data example to these approaches are provided for illustrations, and comparisons are made with LogitBoost.
    Relation: Computational Statistics and Data Analysis,54(10),2203-2213
    Data Type: article
    Appears in Collections:[統計學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    2203-2213.pdf540KbAdobe PDF790View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback