English  |  正體中文  |  简体中文  |  Items with full text/Total items : 88295/117812 (75%)
Visitors : 23406612      Online Users : 94
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/72230
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/72230


    Title: A parsimonious threshold-independent protein feature selection method through the area under receiver operating characteristic curve
    Authors: Wang,Zhanfeng;Chang,Yuan-chin;Ying,Zhiliang;Liang,Zhu;Yang,Yaning
    Contributors: 統計系
    Date: 2007-09
    Issue Date: 2014-12-23 15:20:05 (UTC+8)
    Abstract: Motivation: Protein expression profiling for differences indicative of early cancer holds promise for improving diagnostics. Due to their high dimensionality, statistical analysis of proteomic data from mass spectrometers is challenging in many aspects such as dimension reduction, feature subset selection as well as construction of classification rules. Search of an optimal feature subset, commonly known as the feature subset selection (FSS) problem, is an important step towards disease classification/diagnostics with biomarkers.Methods: We develop a parsimonious threshold-independent feature selection (PTIFS) method based on the concept of area under the curve (AUC) of the receiver operating characteristic (ROC). To reduce computational complexity to a manageable level, we use a sigmoid approximation to the empirical AUC as the criterion function. Starting from an anchor feature, the PTIFS method selects a feature subset through an iterative updating algorithm. Highly correlated features that have similar discriminating power are precluded from being selected simultaneously. The classification rule is then determined from the resulting feature subset.Results: The performance of the proposed approach is investigated by extensive simulation studies, and by applying the method to two mass spectrometry data sets of prostate cancer and of liver cancer. We compare the new approach with the threshold gradient descent regularization (TGDR) method. The results show that our method can achieve comparable performance to that of the TGDR method in terms of disease classification, but with fewer features selected.
    Relation: Bioinformatics,23(20),2788-2794
    Data Type: article
    Appears in Collections:[統計學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML952View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback