English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 90773/120835 (75%)
Visitors : 25093680      Online Users : 341
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/73424
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/73424


    Title: The Application of Data Mining in Accordance to basel Framework on Credit Risk Assessing in the Enterprise Industry
    Other Titles: 應用資料採礦技術建置符合新巴賽爾協定之企業信用風險模型
    Authors: 鄭宇庭
    Cheng, Yu-Ting
    Contributors: 統計系
    Keywords: 新巴塞爾資本協定;資料採礦;信用評等;羅吉斯迴歸模型;Basel Ⅱ;Data Mining;Risk Assessment;Logistic Regression
    Date: 2009-06
    Issue Date: 2015-02-10 15:04:52 (UTC+8)
    Abstract: 巴塞爾銀行監理委員會於2001年1月公佈新版巴塞爾資本協定,並於2006年底正式實施。新協定鼓勵銀行能建立自己的內部評等系統評估違約風險,並重視銀行放款風險考量資訊的量化和降低計提所需資本,進而提高金融機構風險敏感性,以彌補傳統標準法的不足。為因應此趨勢,本研究以台灣公開資料庫的資料為實例,資料的觀察期間為1996至2005年,透過資料採礦流程,以製造傳統產業公司之授信樣本為主要的研究對象,建構企業違約風險模型及其信用評等系統。本研究分別利用類神經網路、羅吉斯迴歸和C5.0決策樹三種方法建立模型並加以評估比較其預測能力。結果發現羅吉斯迴歸模型對違約戶的預測能力及有效性皆較其他兩者為佳,因此,以羅吉斯迴歸方法所建立的模型為本研究最終模型。接下來便針對該模型進行各項驗證,驗證後發現此模型即使應用到不同期間或其他實際資料,仍具有一定的穩定性與預測效力,確實能夠在銀行授信流程實務中加以應用。
    In January 2001 the Supervisory Review Process committee of Basel has announced the new version of Basel capital requirements and has officially set forth the implementation of the requirements in 2006. The revised accord aims to improve risk violation assessment, make regulatory capital more risk sensitive, lower asset minimum requirements and enhanced risk sensitivity management in the banking industry. The data adopted in this study is based on the publicly published data from Taiwan banking industry database. The data used is from the period of 1996 to 2005. The study attempts to construct the model in assessing risk violation and credit evaluation against the traditional manufacturing industry. The methods used in this study is through the process of data mining using Neural Network, Logistics Regression and C5.0 Decision Tree Analysis to construct the model and evaluate the prediction accuracy among the three models. The result shows that the prediction accuracy of Logistics Regression analysis is more favorable than the other two models and therefore is the chosen choice of the model in this study. In addition, the study has adopted multiple testing criteria to validate the validity and accuracy of the model which after testing has confirmed its reliability to be accepted in its application in the banking industry.
    Relation: Journal of Managemeny Science & Statistical Decision, Vol.6, No.2, 32-42.
    管理科學與統計決策
    Data Type: article
    Appears in Collections:[統計學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    32-42.pdf1052KbAdobe PDF948View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback