政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/74030
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 11 |  全文笔数/总笔数 : 88645/118187 (75%)
造访人次 : 23500830      在线人数 : 765
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/74030


    请使用永久网址来引用或连结此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/74030


    题名: Research Trends Analysis by Comparing Data Mining and Customer Relationship Management through Bibliometric Methodology
    作者: Tsai, Hsu-Hao
    蔡緒浩
    贡献者: 資訊管理系
    关键词: Data mining;customer relationship management;research trend analysis;bibliometric methodology
    日期: 2011-06
    上传时间: 2015-03-25 14:49:28 (UTC+8)
    摘要: There are few comprehensive studies and categorization schemes to discuss the characteristics for both data mining and customer relationship management (CRM) although they have already become more important recently. Using a bibliometric approach, this paper analyzes data mining and CRM research trends from 1989 to 2009 by locating headings "data mining" and "customer relationship management" or "CRM" in topics in the SSCI database. The bibliometric analytical technique was used to examine these two topics in SSCI journals from 1989 to 2009, we found 1181 articles with data mining and 1145 articles with CRM. This paper implemented and classified data mining and CRM articles using the following eight categories -- publication year, citation, country/territory, document type, institute name, language, source title and subject area -- for different distribution status in order to explore the differences and how data mining and CRM technologies have developed in this period and to analyze data mining and CRM technology tendencies under the above result. Also, the paper performs the K-S test to check whether the analysis follows Lotka's law. The research findings can be extended to investigate author productivity by analyzing variables such as chronological and academic age, number and frequency of previous publications, access to research grants, job status, etc. In such a way characteristics of high, medium and low publishing activity of authors can be identified. Besides, these findings will also help to judge scientific research trends and understand the scale of development of research in data mining and CRM through comparing the increases of the article author. Based on the above information, governments and enterprises may infer collective tendencies and demands for scientific researcher in data mining and CRM to formulate appropriate training strategies and policies in the future. This analysis provides a roadmap for future research, abstracts technology trends and facilitates knowledge accumulations so that data mining and CRM researchers can save some time since core knowledge will be concentrated in core categories. This implies that the phenomenon "success breeds success" is more common in higher quality publications. Adapted from the source document.
    關聯: Scientometrics,87.3 , 425-450
    数据类型: article
    DOI 連結: http://dx.doi.org/10.1007/s11192-011-0353-6
    DOI: 10.1007/s11192-011-0353-6
    显示于类别:[資訊管理學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML390检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈