政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/74375
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 91280/121421 (75%)
造访人次 : 25439036      在线人数 : 177
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/74375


    请使用永久网址来引用或连结此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/74375


    题名: A Generalized Additive Model For Microarray Gene Expression Data Analysis
    作者: Hsueh, Huey-miin;Tsai, Chen-An;Chen, James J.
    薛慧敏
    贡献者: 統計系
    日期: 2004
    上传时间: 2015-04-07 17:02:33 (UTC+8)
    摘要: Microarray technology allows the measurement of expression levels of a large number of genes simultaneously. There are inherent biases in microarray data generated from an experiment. Various statistical methods have been proposed for data normalization and data analysis. This paper proposes a generalized additive model for the analysis of gene expression data. This model consists of two sub-models: a non-linear model and a linear model. We propose a two-step normalization algorithm to fit the two sub-models sequentially. The first step involves a non-parametric regression using lowess fits to adjust for non-linear systematic biases. The second step uses a linear ANOVA model to estimate the remaining effects including the interaction effect of genes and treatments, the effect of interest in a study. The proposed model is a generalization of the ANOVA model for microarray data analysis. We show correspondences between the lowess fit and the ANOVA model methods. The normalization procedure does not assume the majority of genes do not change their expression levels, and neither does it assume two channel intensities from the same spot are independent. The procedure can be applied to either one channel or two channel data from the experiments with multiple treatments or multiple nuisance factors. Two toxicogenomic experiment data sets and a simulated data set are used to contrast the proposed method with the commonly known lowess fit and ANOVA methods.
    關聯: Journal of Biopharmaceutical Statistics - J BIOPHARM STAT , vol. 14, no. 3, pp. 553-573
    数据类型: article
    DOI 連結: http://dx.doi.org/10.1081/BIP-200025648
    DOI: 10.1081/BIP-200025648
    显示于类别:[統計學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML720检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈